

ICC-ES Report

ICC-ES | (800) 423-6587 | (562) 699-0543 | www.icc-es.org

Most Widely Accepted and Trusted

ESR-2322

Reissued 04/2014 This report is subject to renewal 04/2016.

DIVISION: 03 00 00—CONCRETE SECTION: 03 16 00—CONCRETE ANCHORS DIVISION: 05 00 00—METALS SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

REPORT HOLDER:

HILTI, INC.

7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024

EVALUATION SUBJECT:

HILTI HIT-RE 500-SD ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

Look for the trusted marks of Conformity!

"2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence"

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

SCC Accred

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-2322*

Reissued April 2014 This report is subject to renewal April 2016.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC. 7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024 (800) 879-8000 www.us.hilti.com HiltiTechEng@us.hilti.com

EVALUATION SUBJECT:

HILTI HIT-RE 500-SD ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2012, 2009 and 2006 International Building Code[®] (IBC)
- 2012, 2009 and 2006 International Residential Code[®] (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)[†]

 $^{\dagger} The ADIBC is based on the 2009 IBC. 2009 IBC code sections refernced in this report are the same sections in ADIBC.$

Property evaluated:

Structural

2.0 USES

The Hilti HIT-RE 500-SD Adhesive Anchoring System and Post-Installed Reinforcing Bar System are used to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight concrete having a specified compressive strength, f'_c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

The anchor system complies with anchors as described in Section 1909 of the 2012 IBC and is an alternative to cast-in-place and post-installed anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 and 2006 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC. A Subsidiary of the International Code Council $^{\ensuremath{\mathbb{R}}}$

The post-installed reinforcing bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-RE 500-SD Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-RE 500-SD adhesive packaged in foil packs
- Adhesive mixing and dispensing equipment
- · Equipment for hole cleaning and adhesive injection

The Hilti HIT-RE 500-SD Adhesive Anchoring System may be used with continuously threaded rod, Hilti HIS-(R)N and HIS-RN internally threaded inserts or deformed steel reinforcing bars. The Hilti HIT-RE 500-SD Post-Installed Reinforcing Bar System may only be used with deformed steel reinforcing bars. The primary components of the Hilti Adhesive Anchoring and Post-Installed Reinforcing Bar Systems, including the Hilti HIT-RE 500-SD Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in Figure 5 of this report.

The manufacturer's printed installation instructions (MPII), as included with each adhesive unit package, are replicated as Figure 8 of this report.

3.2 Materials:

3.2.1 Hilti HIT-RE 500-SD Adhesive: Hilti HIT-RE 500-SD Adhesive is an injectable two-component epoxy adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 500-SD is available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, corresponds to an unopened foil pack stored in a dry, dark environment, in accordance with the MPII.

3.2.2 Hole Cleaning Equipment:

3.2.2.1 Standard Equipment: Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 8 of this report.

3.2.2.2 Hilti Safe-Set™ System: For the elements described in Sections 3.2.4 and 3.2.5, the Hilti TE-CD or TE-YD hollow carbide drill bit with a carbide drilling head conform to ANSI B212.15 must be used. Used in

*Revised August 2015

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

conjunction with a Hilti VC 20/40 vacuum, the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole.

3.2.3 Dispensers: Hilti HIT-RE 500-SD must be dispensed with manual dispensers, pneumatic dispensers, or electric dispensers provided by Hilti and detailed in Figure 8.

3.2.4 Anchor Elements:

3.2.4.1 Threaded Steel Rods: Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Tables 7 and 11 and Figure 8 of this report. Steel design information for common grades of threaded rods are provided in Table 2 and Table 3. Carbon steel threaded rods must be furnished with a 0.005-millimeter-thick (5 μ m) zinc electroplated coating complying with ASTM B633 SC 1 or must be hot-dipped galvanized complying with ASTM A153, Class C or D. Threaded steel rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias (chisel point).

3.2.4.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications: Steel reinforcing bars are deformed bars (rebar). Tables 23, 27 and 31 and Figure 8 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section 7.3.2 of ACI 318 with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.2.4.3 HIS-N and HIS-RN Inserts: Hilti HIS-N and HIS-RN inserts have a profile on the external surface and are internally threaded. Tensile properties for HIS-N and HIS-RN inserts are provided in Table 4. The inserts are available in diameters and lengths as shown in Tables 15 and 19 and Figure 8. HIS-N inserts are produced from carbon steel and furnished either with a 0.005-millimeterthick (5 µm) zinc electroplated coating complying with ASTM B633 SC 1 or a hot-dipped galvanized coating complying with ASTM A153, Class C or D. The stainless steel HIS-RN inserts are fabricated from X5CrNiMo17122 K700 steel conforming to DIN 17440. Specifications for common bolt types that may be used in conjunction with HIS-N and HIS-RN inserts are provided in Table 5. Bolt grade and material type (carbon, stainless) must be matched to the insert. Strength reduction factors, ϕ , corresponding to brittle steel elements must be used for HIS-N and HIS-RN inserts.

3.2.4.4 Ductility: In accordance with ACI 318 D.1, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation less than 14 percent or a reduction of area less than 30 percent, or both, are considered brittle. Values for various common steel materials are provided in Tables 2, 3 and 5 of this report.

3.2.5 Steel Reinforcing Bars for Use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebar). Tables 35, 36, 37, and Figure 8 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in Section

3.3 Concrete:

Normal-weight concrete must comply with Section 1903 and 1095 of the IBC. The specified compressive strength of concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. Where values are nonconforming or unstated, the steel must be considered brittle.

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

4.1.1 General: The design strength of anchors under the 2012, 2009 and 2006 IBC, as well as the 2012, 2009 and 2006 IRC, must be determined in accordance with ACI 318-11 (ACI 318) and this report.

A design example according to the 2012 IBC based on ACI 318-11 is given in Figure 6 of this report.

Design parameters are based on ACI 318-11 for use with the 2012, 2009 and 2006 IBC unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318 D.4.1, except as required in ACI 318 D.3.3.

Design parameters are provided in Tables 5 through 10 of this report. Strength reduction factors, ϕ , as given in ACI 318-11 D.4.3 must be used for load combinations calculated in accordance with Section 1605.2 of the 2009 or 2006 IBC or Section 9.2 of ACI 318. Strength reduction factors, ϕ , as given in ACI 318 D.4.4 must be used for load combinations calculated in accordance with ACI 318 Appendix C.

4.1.2 Static Steel Strength in Tension: The nominal static steel strength of an anchor in tension, N_{sa} , in accordance with ACI 318 D.5.1.2 and the associated strength reduction factor, ϕ , in accordance with ACI 318 D.4.3 are provided in the tables outlined in Table 1 for the corresponding anchor steel.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318 D.5.2 with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318 D.5.2.2 using the values of $k_{c,cr}$, and $k_{c,uncr}$ as provided in Tables 8, 12, 16, 20, 24, 28 and 32 of this report. Where analysis indicates no cracking in accordance with ACI 318 D.5.2.6, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N} = 1.0$. See Table 1. For anchors in lightweight concrete see ACI 318-11 D.3.6. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318 D.3.7. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-11 D.5.5. Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, the drilling method (hammer drill, core drill) and the installation conditions (dry, water-saturated, etc.). The resulting characteristic bond

strength must be multiplied by the associated strength factor ϕ_{nn} as follows:

	C R	H O L	H	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
С	A C	Ē	м́	Dry concrete	T _{k,cr}	$\phi_{ m d}$
O N	κ	D	ME	Water-saturated	T _{k,cr}	$\phi_{ m ws}$
C R	E D	R	R	Water-filled hole	T _{k,cr}	$\phi_{\scriptscriptstyle wf}$
E		Ľ	D R	Underwater application	$ au_{k,cr}$	ϕ_{uw}
Е		I N	Ĩ	Dry concrete	$ au_{k,uncr}$	ϕ_{d}
т	U N	G	L	Water-saturated	$ au_{k,uncr}$	ϕ_{ws}
Y P	С	м		Water-filled hole	T _{k,uncr}	$\phi_{\scriptscriptstyle wf}$
E S	R A C	E T		Underwater application	T _{k,uncr}	ϕ_{uw}
	K	H O	С	Dry concrete	T _{k,uncr}	$\phi_{ m d}$
	D	D	O R E	Water saturated	T _{k,uncr}	$\phi_{\scriptscriptstyle WS}$

Figure 4 of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are given in Tables 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33 and 34. See Table 1. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the corresponding tables.

4.1.5 Static Steel Strength in Shear: The nominal static strength of an anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318 D.6.1.2 and strength reduction factor, ϕ , in accordance with ACI 318 D.4.3 are given in the tables outlined in Table 1 for the anchor element types included in this report.

4.1.6 Static Concrete Breakout Strength in Shear: The nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318 D.6.2 based on information given in the tables outlined in Table 1 for the corresponding anchor steel. The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318 D.6.2.2 using the values of *d* given in the tables as outlined in Table 1 for the corresponding anchor steel in lieu of d_a (2009 IBC) and d_o (2006 IBC). In addition, h_{ef} shall be substituted for ℓ_e . In no case must ℓ_e exceed 8*d*. The value of f'_c must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318 D.3.7.

4.1.7 Static Concrete Pryout Strength in Shear: The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318 D.6.3.

4.1.8 Interaction of Tensile and Shear Forces: For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 Section D.7.

4.1.9 Minimum Member Thickness h_{min} , Anchor Spacing s_{min} and Edge Eistance c_{min} : In lieu of ACI 318 D.8.1 and D.8.3, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. In lieu of ACI 318 Section D.8.5, the minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318 D.8.4 applies.

For edge distances c_{ai} and anchor spacing s_{ai} the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$									
EDGE DISTANCE, <i>c</i> ai	DISTANCE, MINIMUM ANCHOR MAXIMUM								
1.75 in. (45 mm) ≤ <i>c_{ai}</i>	5 x <i>d</i> _a ≤ s _{ai} < 16 in.	0.3 x <i>T_{max}</i>							
< 5 x d _a	$s_{ai} \ge 16$ in. (406 mm)	0.5 x T _{max}							

4.1.10 Critical Edge Distance c_{ac} : In lieu of ACI 318 D.8.6, c_{ac} must be determined as follows:

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau \ uncr}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$
 (D-43)

where $\left[\frac{h}{h_{ef}}\right]$ need not be taken as larger than 2.4; and

 τ_{uncr} = characteristic bond strength stated in the tables of this report where by τ_{uncr} need not be taken as larger than:

$$\tau_{uncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c'}}{\pi d_c}$$

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, design anchors must be in accordance with ACI 318 Section D.3.3. The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the corresponding anchor steel. The nominal bond strength $\tau_{k,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in the tables summarized in Table 1 for the corresponding anchor steel.

Modify ACI 318 Sections D.3.3.4.2, D.3.3.4.3(d) and D.3.3.5.2 to read as follows:

D.3.3.4.2 - Where the tensile component of the strengthlevel earthquake force applied to anchors exceeds 20 percent of the total factored anchor tensile force associated with the same load combination, anchors and their attachments shall be designed in accordance with D.3.3.4.3. The anchor design tensile strength shall be determined in accordance with D.3.3.4.4.

Exception:

1. Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy Section D.3.3.4.3(d).

D.3.3.4.3(d) – The anchor or group of anchors shall be designed for the maximum tension obtained from design load combinations that include E, with E increased by Ω_0 . The anchor design tensile strength shall be calculated from D.3.3.4.4.

D.3.3.5.2 – Where the shear component of the strengthlevel earthquake force applied to anchors exceeds 20 percent of the total factored anchor shear force associated with the same load combination, anchors and their attachments shall be designed in accordance with D.3.3.5.3. The anchor design shear strength for resisting earthquake forces shall be determined in accordance with D.6.

Exceptions:

 For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with D.6.2 and D.6.3 need not be computed and D.3.3.5.3 need not apply provided all of the following are satisfied:

1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.

1.2. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).

1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).

1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.

1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.

1.6. The sill plate is 2-inch or 3-inch nominal thickness.

2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with D.6.2 and D.6.3 need not be computed and D.3.3.5.3 need not apply provided all of the following are satisfied:

2.1. The maximum anchor nominal diameter is $\frac{5}{8}$ inch (16 mm).

2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).

2.3. Anchors are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the track.

2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.

2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with D.6.2.1(c).

4.2 Strength Design of Post-Installed Reinforcing Bars:

4.2.1 General: The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318-11 (ACI 318) rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of postinstalled reinforcing bars are illustrated in Figure 3 of this report.

A design example in accordance with the 2012 IBC based on ACI 318-11 is given in Figure 7 of this report.

4.2.2 Determination of bar development length I_d : Values of I_d must be determined in accordance with the

ACI 318 development and splice length requirements for straight cast-in place reinforcing bars. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

Exceptions:

1. The value of f'_c to be inserted in ACI 318 Section 12.2.2, 12.2.3, and 12.3.2 shall not exceed 2,500 psi for post-installed reinforcing bar applications in diamond cored holes.

2. For uncoated and zinc-coated (galvanized) postinstalled reinforcing bars, the factor Ψ_e shall be taken as 1.0. For all other cases, the requirements in ACI 318 Section 12.2.4 (b) shall apply.

3. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.

4.2.3 Minimum Member Thickness, h_{min} , **Minimum Concrete Cover,** $c_{c,min}$, **Minimum Concrete Edge Distance,** $c_{b,min}$, **Minimum Spacing,** $s_{b,min}$: For postinstalled reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , greater than 20d (h_{ef} > 20d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, c _{c,min}
$d_b \leq No. 6 (16mm)$	1-3/16 in.(30mm)
No. $6 < d_b \le No. 10$ (16mm $< d_b \le 32mm$)	1-9/16 in. (40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20d$:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

$$C_{b,min} = d_0/2 + C_{c,min}$$

Required minimum center-to-center spacing between postinstalled bars:

$$S_{b,min} = d_0 + C_{c,min}$$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight postinstalled reinforcing bars must take into account the provisions of ACI 318 Chapter 21. The value of f'_c to be used in ACI 318 Section 12.2.2, 12.2.3, and 12.3.2 calculations shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

4.3 Installation:

Installation parameters are illustrated in Figures 1, 2, 3, and 8 of this report. Installation must be in accordance with ACI 318-11 D.9.1 and D.9.2. Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 500-SD

Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as described in Figure 8 of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, drill bit type, and dispensing tools.

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2012 IBC, Sections 1704.4 and 1704.15 of the 2009 IBC or Section 1704.13 of the 2006 IBC and this report. The special inspector must be on the jobsite during anchor or post-installed reinforcing bar installation to verify anchor or post-installed reinforcing bar type and dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor or post-installed reinforcing bar embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor or post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor or postinstalled reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor or post-installed reinforcing bar product being installed or the personnel performing the installation must require an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors or post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318 D.9.2.4.

Under the IBC, additional requirements as set forth in Sections 1705 and 1706 must be observed, where applicable.

5.0 CONDITIONS OF USE

The Hilti HIT-RE 500-SD Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report is a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Hilti HIT-RE 500-SD adhesive anchors and postinstalled reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions as included in the adhesive packaging and described in Figure 8 of this report.
- **5.2** The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight concrete having a specified compressive strength f'_c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].
- **5.3** The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) except as noted in Sections 4.2.2 and 4.2.4 of this report.
- **5.4** Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions in Figure 8.

- **5.5** Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- **5.6** Hilti HIT-RE 500-SD adhesive anchors and postinstalled reinforcing bars are recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the conditions of this report.
- **5.7** In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report, and post-installed reinforcing bars must comply with section 4.2.4 of this report.
- **5.8** Hilti HIT-RE 500-SD adhesive anchors and postinstalled reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- **5.9** Anchor strength design values are established in accordance with Section 4.1 of this report.
- **5.10** Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- **5.11** Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values described in this report.
- **5.12** Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318-11 for cast-in place bars and section 4.2.3 of this report
- **5.13** Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the building official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- 5.14 Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited in the code, Hilti HIT-RE 500-SD adhesive anchors and post-installed reinforcing bars are permitted for installation in fireresistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that support gravity load-bearing structural elements are within a fire-resistive envelope or a fireresistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- **5.15** Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.16** Use of zinc-plated carbon steel anchors is limited to dry, interior locations.
- 5.17 Steel anchoring materials in contact with preservativetreated and fire-retardant-treated wood must be of

zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.

- **5.18** Periodic special inspection must be provided in accordance with Section 4.3 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.3 of this report.
- **5.19** Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed by personnel certified by an applicable certification program in accordance with ACI 318 D.9.2.2 or D.9.2.3.
- **5.20** Hilti HIT-RE 500-SD adhesives are manufactured by Hilti GmbH, Kaufering, Germany, under a quality control program with inspections by ICC-ES.
- **5.21** Hilti HIS-N and HIS-RN inserts are manufactured by Hilti (China) Ltd., Guangdong, China, under a quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated February 2015, including Table 3.2 which incorporates requirements in ACI 355.4-11, and Table 3.8 for evaluating post-installed reinforcing bars.

7.0 IDENTIFICATION

- **7.1** Hilti HIT-RE 500-SD adhesive is identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name, and evaluation report number (ESR-2322).
- **7.2** HIS-N and HIS-RN inserts are identified by packaging labeled with the manufacturer's name (Hilti Corp.) and address, anchor name, and evaluation report number (ESR-2322).
- **7.3** Threaded rods, nuts, washers, bolts, cap screws, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.

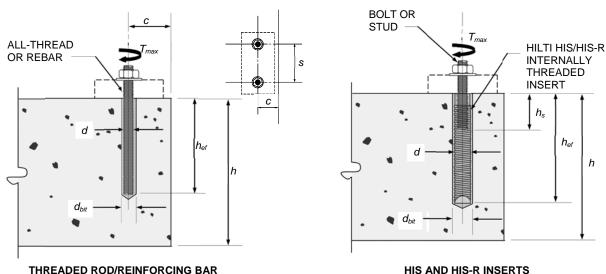


FIGURE 1—INSTALLATION PARAMETERS FOR POST-INSTALLED ADHESIVE ANCHORS

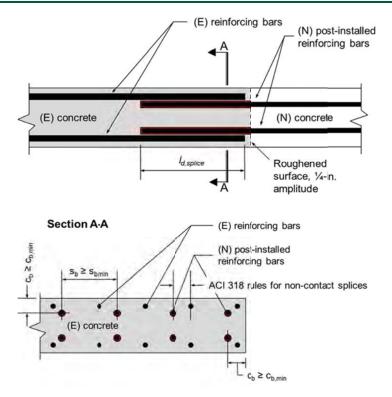


FIGURE 2—INSTALLATION PARAMATERS FOR POST-INSTALLED REINFORCING BARS

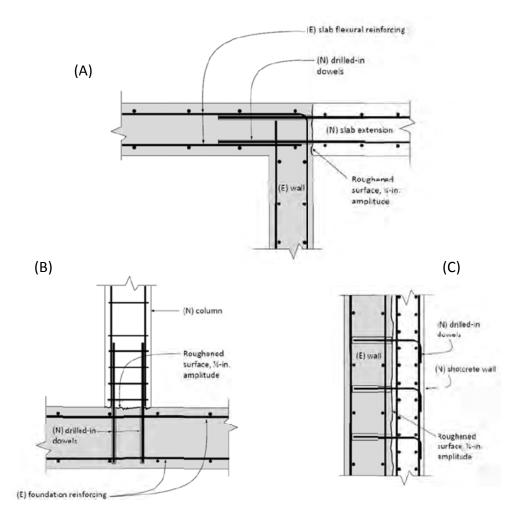


FIGURE 3—APPLICATION EXAMPLES FOR POST-INSTALLED REINFORCING BARS:

(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS;

(C) DEVELOPMENT OF SHEAR DOWELS FOR NEWLY THICKENED SHEAR WALL

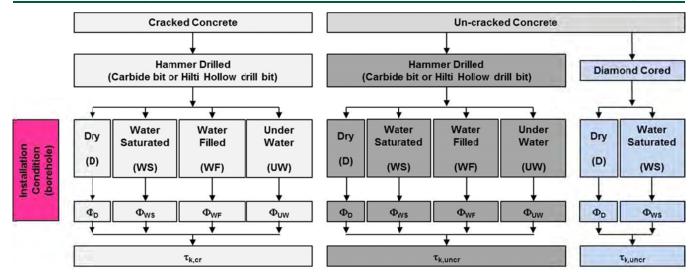


FIGURE 4—FLOW CHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH FOR POST-INSTALLED ADHESIVE ANCHORS

Design strength ¹		Threaded rod		Hilti HIS internally threaded insert		Deformed reinforcement			
		fractional	metric	fractional	metric	fractional	metric	Canadian	
Steel	N _{sa} , V _{sa}		Table 7	Table 11	Table 15	Table 19	Table 23	Table 27	Table 31
Concrete	$egin{array}{c} N_{pn}, \ N_{sb}, \ N_{sbg}, \ N_{cb}, \ N_{cbg}, \ V_{cb}, \ V_{cbg}, \ V_{cp}, \ V_{cpg} \end{array}$		Table 8	Table 12	Table 16	Table 20	Table 24	Table 28	Table 32
Bond ²	N _a , N _{ag}	hammer-drilled holes	Table 9	Table 13	Table 17	Table 21	Table 25	Table 29	Table 33
Bond	IV _a , IV _{ag}	diamond cored holes	Table 10	Table 14	Table 18	Table 22	Table 26	Table 30	Table 34
Determination of development length for post-installed reinforcing bar connections		-	-	-	-	Table 35	Table 36	Table 37	

TABLE 1—DESIGN TABLE INDEX

¹Ref. ACI 318-11 D.4.1.1.

²See Section 4.1 of this evaluation report

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON STEEL THREADED ROD MATERIALS¹

THREADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f _{ya}	f _{uta} /f _{ya}	Elongation, min. percent ⁵	Reduction of Area, min. percent	Specification for nuts ⁶	
ASTM A193 ² Grade B7	psi	125,000	105,000	1.19	16	50	ASTM A194	
≤ 2 ¹ / ₂ in. (≤ 64 mm)	(MPa)	(862)	(724)	1.15	10	50	AOTIM ATO T	
ASTM F568M ³ Class 5.8	MPa	500 400					DIN 934 (8-A2K)	
M5 (¹ / ₄ in.) to M24 (1 in.) (equivalent to ISO 898-1)	(psi)	(72,500)	(58,000)	1.25	10	35	ASTM A563 Grade DH ⁷	
ISO 898-1 ⁴ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 (8-A2K)	
ISO 898-1 ⁴ Class 8.8	MPa	800	640	4.05	40	50	DIN 934 (8-A2K)	
150 898-1 Class 8.8	(psi)	(116,000)	(92,800)	1.25	12	52		

¹Hilti HIT-RE 500-SD must be used with continuously threaded carbon steel rod (all-thread) have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

²Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

³Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners

⁴Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁵Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁶Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must

have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁷Nuts for fractional rods.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STAINLESS STEEL THREADED ROD MATERIALS¹

THREADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, f _{ya}	f _{uta} /f _{ya}	Elongation, min. percent	Reduction of Area, min. percent	Specification for nuts ⁴	
ASTM F593 ² CW1 (316) $^{1/4}_{4}$ to $^{5/8}_{8}$ in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	ASTM F594 Alloy group 1, 2 or 3	
ASTM F593 ² CW2 (316) ³ / ₄ to 1 ¹ / ₂ in.	psi	85,000	45,000	1,89	25		ASTM F594 Alloy group 1, 2, or 3	
	(MPa)	(586)	(310)					
ISO 3506-1 ³ A4-70	MPa	700	450	1.56	40	-	ISO 4032	
M8 – M24	(psi)	(101,500)	(65,250)					
ISO 3506-1 ³ A4-50	MPa	500	210	2.00	40	_	ISO 4032	
M27 – M30	(psi)	(72,500)	(30,450)	2.00	U		100 4032	

¹Hilti HIT-RE 500-SD must be used with continuously threaded stainless steel rod (all-thread) that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

²Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

³Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs.

⁴Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

TABLE 4—SPECIFICATIONS AND PHYSICAL PROPERTIES OF U.S. CUSTOMARY UNIT AND METRIC HIS-N AND HIS-RN INSERTS

HILTI HIS-N AND HIS-RN INSERTS		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength, f _{ya}	
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	MPa	490	410	
1561 9SMnPb28K ³ / ₈ and M8 to M10	(psi)	(71,050)	(59,450)	
Carbon Steel DIN EN 10277-3 11SMnPb30+c or DIN	MPa	460	375	
1561 9SMnPb28K ¹ / ₂ to ³ / ₄ and M12 to M20	(psi)	(66,700)	(54,375)	
Stainless Steel	MPa	700	350	
EN 10088-3 X5CrNiMo 17-12-2	(psi)	(101,500)	(50,750)	

TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH HIS-N AND HIS-RN INSERTS^{1,2}

BOLT, CAP SCREW OR STUD SPECIFICATION		Minimum specified ultimate strength f _{uta}	Minimum specified yield strength 0.2 percent offset f _{ya}	f _{uta} /f _{ya}	Elongation, min.	Reduction of Area, min.	Specification for nuts ⁶	
SAE J429 ³ Grade 5	psi	120,000	92,000	1.30	14	35	SAE J995	
SAE J429 Glade 5	(MPa)	(828)	(634)	1.50	14		SAF 1992	
ASTM A325 ^{4 1} / ₂ to 1-in.	psi	120,000	0,000 92,000		14	35	A563 C, C3, D, DH,	
ASTM AS25 /2 to 1-III.	(MPa)	(828)	(634)	1.30	14		DH3 Heavy Hex	
ASTM A193 ⁵ Grade B8M	psi	110,000	95,000	1.16	15	45	ASTM F594 ⁷	
(AISI 316) for use with HIS-RN	(MPa)	(759)	(655)	1.10	15	40	Alloy Group 1, 2 or 3	
ASTM A193 ⁵ Grade B8T	psi	125,000	100,000	1.05	12	35	ASTM F594 ⁷ Alloy Group 1, 2 or 3	
(AISI 321) for use with HIS-RN	(MPa)	(862)	(690)	1.25	12	35		

¹Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel HIS inserts.

²Only stainless steel bolts, cap screws or studs must be used with HIS-RN inserts.

³Mechanical and Material Requirements for Externally Threaded Fasteners

⁴Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

⁵Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

⁶Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud.

⁷ Nuts for stainless steel studs must be of the same alloy group as the specified bolt, cap screw, or stud.

TABLE 6—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

	DN	Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, <i>f_{ya}</i>	
ASTM A615 ¹ Gr. 60	psi	90,000	60,000	
ASTM A015 GI. 60	(MPa)	(620)	(414)	
ASTM A615 ¹ Gr. 40	psi	60,000	40,000	
ASTM A015 GI. 40	(MPa)	(414)	(276)	
DIN 488 ² BSt 500	MPa	550	500	
DIN 488 BSI 500	(psi)	(79,750)	(72,500)	
CAN/CSA-G30.18 ³ Gr. 400	MPa	540	400	
CAN/CSA-G30.18 GF. 400	(psi)	(78,300)	(58,000)	

¹Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

²Reinforcing steel; reinforcing steel bars; dimensions and masses

³Billet-Steel Bars for Concrete Reinforcement

TABLE 7—STEEL DESIGN INFORMATION FOR U.S. CUSTOM	ARY UNIT THREADED ROD ¹
--	------------------------------------

DESIGN INFORMATION				Nominal rod diameter (in.)							
DE	SIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ /8	³ / ₄	⁷ / ₈	1	1 ¹ / ₄	
			in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Rod	O.D.	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)	
Rod effective cross-sectional area		_	in.2	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691	
		A _{se}	(mm ²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)	
			lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260	
	Nominal strength as	N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)	
.82	governed by steel strength		lb	2,810	6,175	9,830	14,550	20,085	26,345	42,155	
ISS 5.		V _{sa}	(kN)	(12.5)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)	
ISO 898-1 Class	Reduction for seismic shear	$lpha_{V,seis}$	-	1.00					I		
ISO 8	Strength reduction factor ϕ for tension ²	φ	-				0.65				
	Strength reduction factor ϕ for shear ²	φ	-				0.60				
	Nominal strength as governed by steel strength		lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135	
		N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)	
		V _{sa}	lb	4,845	10,640	16,950	25,085	34,625	45,425	72,680	
3 B7 ²		V _{sa}	(kN)	(21.5)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)	
ASTM A 193	Reduction for seismic shear	$lpha_{V,seis}$	-				1.00				
ASTI	Strength reduction factor ϕ for tension ²	φ	-				0.75				
	Strength reduction factor ϕ for shear ²	φ	-				0.65				
		N/	lb	7,750	14,190	22,600	28,430	39,245	51,485	82,370	
ss ²	Nominal strength as governed by steel	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	(366.4)	
Stainless ²	strength	V _{sa}	lb	3,875	8,515	13,560	17,060	23,545	30,890	49,425	
		v sa	(kN)	(17.2)	(.37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)	
93, CW	Reduction for seismic shear	$lpha_{V,seis}$	-	0.80							
ASTM F593, CW	Strength reduction factor ϕ for tension ²	φ	-				0.65				
AS	Strength reduction factor ϕ for shear ²	φ	-				0.60				

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. 2 For use with the load combinations of ACI 318 Section 9.2, as set forth in ACI 318 D.4.3.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD¹

					Nomin	al rod diame	eter (in.)					
DESIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₄			
Effectiveness factor for	le .	in-lb		17								
cracked concrete	k _{c,cr}	(SI)		(7.1)								
Effectiveness factor for	k	in-lb				24						
uncracked concrete	k _{c,uncr}	(SI)				(10)						
Min. anchor spacing ³		in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	6 ¹ / ₄			
win. anchor spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)			
Min. edge distance ³		in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	6 ¹ / ₄			
Min. edge distance	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(159)			
Minimum member thickness		in.	$h_{ef} + 1^{1}/_{4}$									
	h _{min}	(mm)	(h _{ef}	+ 30)	$h_{ef} + 2d_0$							
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			See Secti	ion 4.1.10 of	this report.					
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-	0.65									
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70									

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors under Condition B without supplementary reinforcement as defined in ACI 318 Section D.4.3. ³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 9-BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT¹

							Nominal	rod diam	eter (in.))	
DE	SIGN INFORM	ATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ /8	³ / ₄	⁷ / ₈	1	1 ¹ / ₄
N / in	nimum Embedm	ont	h	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
		ent	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Ма	aximum Embedrr	nent	h _{ef,max}	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	25
			.,	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
		Characteristic bond strength in uncracked concrete ²	$\tau_{k,uncr}$	Psi	1,590	1,570	1,505	1,455	1,405	1,365	1,310
	Temperature range A ³			(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.4)	(9.0)
ē	range / t	Characteristic bond strength in cracked concrete ²	$\tau_{k,cr}$	Psi (MDo)	770	740	740	700	645	600	510 (2.5)
lcre		Characteristic bond strength		(MPa) Psi	(5.3) 865	(5.1) 850	(5.1) 815	(4.8) 790	(4.4) 765	(4.1) 740	(3.5) 710
Dry Concrete	Temperature	in uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(6.0)	(5.9)	(5.6)	(5.4)	(5.3)	(5.1)	(4.9)
Dry	range B ³	Characteristic bond strength	au	Psi	420	405	390	380	350	325	275
		in cracked concrete ²	$\tau_{k,cr}$	(MPa)	(2.9)	(2.8)	(2.7)	(2.6)	(2.4)	(2.2)	(1.9)
	Anchor Catego	ry, dry concrete	-	-	1	1	1	1	2	2	2
	Strength Redu	ction factor	ϕ_{d}	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
		Characteristic bond strength	τ	Psi	1,590	1,570	1,505	1,455	1,405	1,355	1,230
ete	Temperature	in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.3)	(8.5)
oncr	range A ³	Characteristic bond strength	$\tau_{k,cr}$	Psi	770	740	740	700	645	595	475
Ŭ P		in cracked concrete ²	• K, CI	(MPa)	(5.3)	(5.1)	(5.1)	(4.8)	(4.4)	(4.1)	(3.3)
rate	Temperature range B ³	Characteristic bond strength in uncracked concrete ²	$\tau_{k,uncr}$	Psi (MPa)	865 (6.0)	850 (5.9)	815 (5.6)	790 (5.4)	765 (5.3)	735 (5.1)	665 (4.6)
Satu		Characteristic bond strength		Psi	420	405	390	380	350	315	260
Water Saturated Concrete	-	in cracked concrete ²	$\tau_{k,cr}$	(MPa)	(2.9)	(2.8)	(2.7)	(2.6)	(2.4)	(2.2)	(1.8)
Wa	Anchor Catego	ry, water saturated concrete	-	-	2	2	3	3	3	3	3
	Strength Reduction factor		ϕ_{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45
		Characteristic bond strength	Ţ.	Psi	1,590	1,570	1,445	1,325	1,220	1,145	1,035
e	Temperature	in uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.0)	(9.1)	(8.4)	(7.9)	(7.1)
Icret	range A ³	Characteristic bond strength	-	Psi	770	740	710	635	555	500	400
Cor		in cracked concrete ²	$\tau_{k,cr}$	(MPa)	(5.3)	(5.1)	(4.9)	(4.4)	(3.8)	(3.4)	(2.8)
ole		Characteristic bond strength	$\tau_{k,uncr}$	Psi	865	850	780	715	665	620	560
ed h	Temperature	in uncracked concrete ²	€K,UNCI	(MPa)	(6.0)	(5.9)	(5.4)	(4.9)	(4.6)	(4.3)	(3.9)
ater-filled hole Concrete	range B ³	Characteristic bond strength in cracked concrete ²	$\tau_{k,cr}$	Psi	420	405	375	345	300	270	215
Wate				(MPa)	(2.9)	(2.8)	(2.6)	(2.4)	(2.1)	(1.8)	(1.5)
>	0	ry, water filled hole	-	-	3	3	3	3	3	3	3
	Strength Redu	ction factor	$\phi_{ m wf}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	-	Characteristic bond strength	τ _{k,uncr}	Psi	1,510	1,475	1,415	1,355	1,290	1,255	1,190
ion	Temperature range A ³	in uncracked concrete ²	,	(MPa)	(10.5)	(10.2)	(9.8)	(9.3)	(8.9)	(8.6)	(8.2)
licat	- 3	Characteristic bond strength in cracked concrete ²	$\tau_{k,cr}$	Psi (MPa)	730 (5.0)	695 (4.8)	695 (4.8)	650 (4.5)	585 (4.0)	545 (3.8)	460 (3.2)
appl		Characteristic bond strength		Psi	820	800	765	735	705	680	645
Underwater application	Temperature	in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(5.7)	(5.5)	(5.3)	(5.0)	(4.9)	(4.7)	(4.5)
erwa	range B ³	Characteristic bond strength	$\tau_{k,cr}$	Psi (MBa)	400	380	370	355	320	300	250
Jnd	in cracked concrete ²			(MPa)	(2.8)	(2.6)	(2.5)	(2.4)	(2.2)	(2.0)	(1.7)
	Anchor Category, underwater application Strength Reduction factor	-	-	3	3	3	3	3	3	3	
	Strength Redu	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix Example 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.1}$ [For SI: $(f'_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination. ² Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent. ³Temperature range A: Maximum short term temperature = $130^{\circ}F(55^{\circ}C)$, maximum long term temperature = $110^{\circ}F(43^{\circ}C)$.

Temperature range B: Maximum short term temperature = 162°F (72°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

D	ESIGN INFORM	ATION	Symbol				Nominal	rod diame	eter (in.)		
			Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₄
		Characteristic bond strength		Psi	1,225	1,195	1,090	1,010	955	900	820
		in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(6.2)	(5.7)
	Temperature	Minimum Embedment	h.	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	5
	range A ³		h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
crete		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
/ Concrete		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	665 (4.6)	650 (4.5)	590 (4.1)	550 (3.8)	515 (3.6)	490 (3.4)	N/A
Dry	Temperature range B ³	Minimum Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
	Anchor Category, dry concrete		-	-	1	1	2	2	2	3	3
	Strength Reduction factor		ϕ_{d}	-	0.65	0.65	0.55	0.55	0.55	0.45	0.45
		Characteristic bond strength	_	Psi	1,225	1,195	1,090	1,010	955	855	725
		in uncracked concrete ²	$ au_{k,uncr}$	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(5.9)	(5.0)
ete	Temperature range A ³	Minimum Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
Water Saturated Concrete		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
turated		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	Psi (MPa)	665 (4.6)	650 (4.5)	590 (4.1)	550 (3.8)	515 (3.6)	N/A	N/A
ater Sa	Temperature range B ³	Minimum Embedment	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ³ / ₄ (70)	3 ¹ / ₈ (79)	3 ¹ / ₂ (89)	3 ¹ / ₂ (89)	4 (102)	5 (127)
Wa		Maximum Embedment	h _{ef,max}	in. (mm)	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	20 (508)	25 (636)
	Anchor Catego	Anchor Category, water saturated concrete		-	2	2	3	3	3	3	3
	Strength Redu	ction factor	ϕ_{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45

TABLE 10—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A CORE DRILL^{1,4}

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c' / 2,500)^{0.1}$ [For SI: $(f_c' / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads such as wind and seismic, bond strengths may be increased 40 percent.

³Temperature range A: Maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

						No	minal rod o	diameter (m	m)			
DES	SIGN INFORMATION	Symbol	Units	8	10	12	16	20	24	27	30	
Dee	l Outside Discussion		mm	8	10	12	16	20	24	27	30	
ROC	Outside Diameter	d	(in.)	(0.31)	(0.39)	(0.47)	(0.63)	(0.79)	(0.94)	(1.06)	(1.18)	
Rod	effective cross-sectional		mm ²	36.6	58	84.3	157	245	353	459	561	
area	a	A _{se}	(in.²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)	(0.547)	(0.711)	(0.870)	
			kN	18.5	29.0	42.0	78.5	122.5	176.5	229.5	280.5	
	Nominal strength as	N _{sa}	(lb)	(4,114)	(6,519)	(9,476)	(17,647)	(27,539)	(39,679)	(51,594)	(63,059)	
8.9	governed by steel strength	N	kN	9.0	14.5	25.5	47.0	73.5	106.0	137.5	168.5	
ISS 5		V _{sa}	(lb)	(2,057)	(3,260)	(5,685)	(10,588)	(16,523)	(23,807)	(30,956)	(37,835)	
ISO 898-1 Class 5.8	Reduction for seismic shear	$lpha_{V,seis}$	-	1.00								
ISO 8	Strength reduction factor ϕ for tension ²	φ	-		0.65							
	Strength reduction factor ϕ for shear ²	φ	-				0.	60				
	Nominal strength as governed by steel strength	N _{sa}	kN	29.5	46.5	67.5	125.5	196.0	282.5	367.0	449.0	
			(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)	(63,486)	(82,550)	(100,89	
8			kN	14.5	23.0	40.5	75.5	117.5	169.5	220.5	269.5	
ss 8.		V _{sa}	(lb)	(3,291)	(5,216)	(9,097)	(16,942)	(26,438)	(38,092)	(49,530)	(60,537)	
SO 898-1 Class 8.8	Reduction for seismic shear	$lpha_{V,seis}$	-	1.00								
ISO 86	Strength reduction factor ϕ for tension ²	φ	-				0.	65				
	Strength reduction factor ϕ for shear ²	φ	-				0.	60				
			kN	25.6	40.6	59.0	109.9	171.5	247.1	229.5	280.5	
ess ³	Nominal strength as	N _{sa}	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)	(55,550)	(51,594)	(63,059)	
tainl	governed by steel strength	V	kN	12.8	20.3	35.4	65.9	102.9	148.3	137.7	168.3	
4 S	-	V _{sa}	(lb)	(2,880)	(4,564)	(7,960)	(14,824)	(23,133)	(33,330)	(30,956)	(37,835)	
Class	Reduction for seismic shear	$lpha_{V,seis}$	-				0.	80				
SO 3506-1 Class A4 Stainless ³	Strength reduction factor ϕ for tension ²	φ	-	0.65								
SOSI	Strength reduction factor ϕ for shear ²	φ	-	0.60								

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. ² For use with the load combinations of ACI 318 Section 9.2, as set forth in ACI 318 D.4.3.

³ A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30)

TABLE 12—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT¹

	0				No	minal rod o	diameter (m	im)				
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20	24	27	30		
Effectiveness factor for	k	SI		7.1								
cracked concrete	k _{c,cr}	(in-lb)	(17)									
Effectiveness factor for	k	SI				1	0					
uncracked concrete	k _{c,uncr}	(in-lb)	(24)									
Min. anchor spacing ³		mm	40	50	60	80	100	120	135	150		
win. anchor spacing	S _{min}	(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	(4.7)	(5.3)	(5.9)		
Min. edge distance ³	C _{min}	mm	40	50	60	80	100	120	135	150		
win. edge distance		(in.)	(1.6)	(2.0)	(2.4)	(3.2)	(3.9)	(4.7)	(5.3)	(5.9)		
Minimum member thickness	h _{min}	mm	h _{ef} -	+ 30	h_{ef} + 2 d_o							
	l Imin	(in.)	(h _{ef} +	+ 1 ¹ / ₄)								
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			See	Section 4.1	.10 of this re	eport.				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-				0.	65					
Strength reduction factor for shear, concrete failure ϕ -modes, Condition B2 ϕ			0.70									

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement. ³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

יח	ESIGN INFORM		Symbol	Units				Nominal I	rod diame	ter (mm)		
		ATION	Symbol	Units	8	10	12	16	20	24	27	30
м л;	nimum Embedm	opt	h	mm	60	60	70	80	90	96	108	120
IVII		ent	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
	aximum Embedrr	ant	h	mm	160	200	240	320	400	480	540	600
IVIa		ient	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
		Characteristic bond		MPa	11.0	11.0	11.0	10.4	9.9	9.6	9.3	9.1
	Temperature	strength in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1505)	(1435)	(1385)	(1355)	(1320)
	range A ³	Characteristic bond		MPa	5.3	5.3	5.3	5.1	4.7	4.2	4.0	3.7
te	0	strength in cracked concrete ²	$\tau_{k,cr}$	(psi)	(770)	(770)	(770)	(740)	(680)	(610)	(580)	(535)
Dry Concrete	Temperature	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.6 (815)	5.4 (775)	5.2 (750)	5.1 (735)	4.9 (715)
	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	2.9 (420)	2.9 (420)	2.9 (420)	2.7 (390)	2.6 (375)	2.3 (335)	2.2 (320)	2.0 (290)
	Anchor Catego	ory, dry concrete	-	-	1	1	1	1	1	2	2	2
	Strength Redu	ction factor	ϕ_d	-	0.65	0.65	0.65	0.65	0.65	0.55	0.55	0.55
		Characteristic bond		MPa	11.0	11.0	11.0	10.4	9.9	9.6	9.1	8.6
Ð	Temperature	strength in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1505)	(1435)	(1385)	(1320)	(1255)
cret	range A ³	Characteristic bond		MPa	5.3	5.3	5.3	5.1	4.7	4.2	3.9	3.5
Ö	U U	strength in cracked	$\tau_{k,cr}$									
D D		concrete ² Characteristic bond		(psi)	(770)	(770)	(770)	(740)	(685)	(615)	(570)	(510)
Water Saturated Concrete	Temperature range B ³	strength in uncracked concrete ²	Tk,uncr	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.6 (815)	5.4 (775)	5.2 (750)	5.0 (720)	4.7 (680)
ater S		Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	2.9 (415)	2.9 (415)	2.9 (415)	2.7 (400)	2.6 (370)	2.3 (335)	2.1 (310)	1.9 (280)
≥	Anchor Catego	ry, water sat. concrete	-	-	2	2	2	3	3	3	3	3
	Strength Reduction factor		ϕ_{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	11.0	11.0	11.0	10.0	8.9	8.2	7.8	7.4
a	Temperature	strength in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1445)	(1290)	(1190)	(1125)	(1070)
cret	range A ³	Characteristic bond		MPa	5.3	5.3	5.3	4.9	4.2	3.7	3.3	3.0
Conc	U U	strength in cracked concrete ²	T _{k,cr}	(psi)	(770)	(770)	(770)	(710)	(615)	(530)	(485)	(440)
Water-filled hole Concrete	Temperature	Characteristic bond strength in uncracked concrete ²	τ _{k,uncr}	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.4 (785)	4.8 (700)	4.5 (650)	4.2 (615)	4.0 (575)
Water-fil	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	2.9 (420)	2.9 (420)	2.9 (420)	2.6 (375)	2.3 (335)	2.0 (285)	1.8 (265)	1.6 (235)
-		ry, water filled hole	-	-	3	3	3	3	3	3	3	3
	Strength Redu		$\phi_{\scriptscriptstyle Wf}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Temperature	Characteristic bond strength in uncracked concrete ²	τ _{k,uncr}	MPa (psi)	10.4 (1510)	10.4 (1510)	10.4 (1510)	9.8 (1415)	9.2 (1330)	8.8 (1275)	8.6 (1245)	8.3 (1200)
plication	range A ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	5.0 (730)	5.0 (730)	5.0 (730)	4.8 (695)	4.4 (635)	3.9 (565)	3.7 (540)	3.4 (490)
Underwater application	Temperature	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	MPa (psi)	5.7 (820)	5.7 (820)	5.7 (820)	5.3 (770)	5.0 (725)	4.8 (690)	4.7 (675)	4.5 (650)
Under	range B ³	Characteristic bond strength in cracked concrete ²	τ _{k,cr}	MPa (psi)	2.8 (400)	2.8 (400)	2.8 (400)	2.5 (370)	2.4 (345)	2.1 (310)	2.0 (290)	1.8 (265)
		Anchor Category, underwater app.		-	3	3	3	3	3	3	3	3
	Strength Reduction factor		ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c / 2,500$)^{0.1} [For SI: ($f_c / 17.2$)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.

² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature =110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 14—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A CORE DRILL^{1,4}

		TION					Nor	ninal rod di	ameter (m	m)		
DE		ATION	Symbol	Units	8	10	12	16	20	24	27	30
		Characteristic bond		MPa	8.4	8.4	8.4	7.5	6.8	6.3	6.1	5.8
		strength in uncracked concrete	$\tau_{k,uncr}$	(psi)	(1,225)	(1,225)	(1,225)	(1,090)	(990)	(920)	(880)	(840)
	Temperature	Minimum	h	mm	60	60	70	80	90	96	108	120
	range A ³	embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
		Maximum	h _{ef.max}	mm	160	200	240	320	400	480	540	600
ete		embedment	Tef,max	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
Concrete	Characteristic bond strength in	_	MPa	4.6	4.6	4.6	4.1	3.7	3.4	3.3	N/A	
ŭ		uncracked concrete ²	$ au_{k,uncr}$	(psi)	(665)	(665)	(665)	(590)	(535)	(495)	(480)	IN/A
Dry	Temperature	Minimum embedment	h _{ef,min}	mm	60	60	70	80	90	96	108	120
	range B ³		l lef,min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
		Maximum	h _{ef,max}	mm	160	200	240	320	400	480	540	600
	embedment		net,max	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
	Anchor Category, dry concrete		-	-	1	1	1	2	2	2	3	3
	Strength reduction factor		ϕ_{d}	-	0.65	0.65	0.65	0.55	0.55	0.55	0.45	0.45
	Characteristic bond strength in		_	MPa	8.4	8.4	8.4	7.5	6.8	6.1	5.7	5.2
		uncracked concrete	$ au_{k,uncr}$	(psi)	(1,225)	(1,225)	(1,225)	(1,090)	(990)	(885)	(825)	(755)
	Temperature	Minimum	h	mm	60	60	70	80	90	96	108	120
te	range A ³	embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
Concrete		Maximum	h.	mm	160	200	240	320	400	480	540	600
		embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
ted		Characteristic bond strength in	Ŧ	MPa	4.6	4.6	4.6	4.1	3.7	3.3	N/A	N/A
saturated		uncracked concrete ²	$ au_{k,uncr}$	(psi)	(665)	(665)	(665)	(595)	(535)	(480)	11/73	
r sa	Temperature	Minimum	h _{ef.min}	mm	60	60	70	80	90	96	108	120
Water	range B ³	embedment	l lef,min	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
S		Maximum	h _{ef,max}	mm	160	200	240	320	400	480	540	600
		embedment	• ei,max	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.4)	(23.7)
	Anchor Catego	ry, water-sat. concrete	-	-	2	2	2	3	3	3	3	3
	Strength reduction factor		<i>\$</i> _d	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.1}$ [For SI: $(f'_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For short-term loads including wind and seismic, bond

strengths may be increased 40 percent.

³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ Bond strength values applicable to Seismic Design Categories A and B only.

					Nominal bolt/cap s	crew diameter (in.)				
DES	SIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ /8	³ / ₄			
			in.	0.65	0.81	1	1.09			
HIS	insert O.D.	d	(mm)	(16.5)	(20.5)	(25.4)	(27.6)			
1110	incart longth	I	in.	4.33	4.92	6.69	8.07			
піз	insert length	I	mm)	(110)	(125)	(170)	(205)			
Bolt	effective cross-sectional	Δ	(mm)	0.0775	0.1419	0.2260	0.3345			
area	a	A _{se}	(mm²)	(50)	(92)	(146)	(216)			
HIS insert effective cross-		4	in.2	0.178	0.243	0.404	0.410			
sectional area		A _{insert}	(mm²)	(115)	(157)	(260)	(265)			
			lb	9,690	17,740	28,250	41,815			
	Nominal strength as governed by steel	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)			
	strength – ASTM A193		lb	5,815	10,645	16,950	25,090			
	B7 ³ bolt/cap screw	V _{sa}	(kN)	(25.9)	(47.3)	(75.4)	(111.6)			
B7	Nominal strength as		lb	12,650	16,195	26,925	27,360			
A193	governed by steel strength – HIS-N insert	N _{sa}	(kN)	(56.3)	(72.0)	(119.8)	(121.7)			
ASTM A193	Reduction for seismic shear	$lpha_{V,seis}$	-	1.00						
	Strength reduction factor ϕ for tension ²	φ	-		0.65					
	Strength reduction factor ϕ for shear ²	φ	-		0.	60				
	Nominal strength as	Ν.	lb	8,525	15,610	24,860	36,795			
	governed by steel strength – ASTM A193	N _{sa}	(kN)	(37.9)	(69.4)	(110.6)	(163.7)			
20	Grade B8M SS bolt/cap	V	lb	5,115	9,365	14,915	22,075			
8M	screw	V _{sa}	(kN)	(22.8)	(41.7)	(66.3)	(98.2)			
e B	Nominal strength as governed by steel	N _{sa}	lb	17,165	23,430	38,955	39,535			
jrac	strength – HIS-RN insert	/ vsa	(kN)	(76.3)	(104.2)	(173.3)	(175.9)			
ASTM A193 Grade B8M SS	Reduction for seismic shear	$lpha_{V,seis}$	-		0.	80				
ASTM	Strength reduction factor ϕ for tension ²	φ	-	0.65						
	Strength reduction factor ϕ for shear ²	φ	-	0.60						

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. ² For use with the load combinations of ACI 318 9.2, as set forth in ACI 318 D.4.3. Values correspond to a brittle steel element for the HIS

insert.

³For the calculation of the design steel strength in tension and shear for the bolt or screw, the ϕ factor for ductile steel failure according to ACI 318 D4.3 can be used.

TABLE 16—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS¹

				Nominal bolt/cap s	crew diameter (in.)					
DESIGN INFORMATION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄				
F (1)		in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈				
Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)				
Effectiveness factor for	le le	in-lb		17						
cracked concrete	k _{c,cr}	(SI)	(7.1)							
Effectiveness factor for	le le	in-lb		2	4					
uncracked concrete	k _{c,uncr}	(SI)	(10)							
Min. anchor spacing ³	S _{min}	in.	3 ¹ / ₄	4	5	5 ¹ / ₂				
win. anchor spacing		(mm)	(83)	(102)	(127)	(140)				
Min. edge distance ³	C _{min}	in.	3 ¹ / ₄	4	5	5 ¹ / ₂				
win. edge distance		(mm)	(83)	(102)	(127)	(140)				
Minimum member thickness	h	in.	5.9	6.7	9.1	10.6				
Minimum member unickness	h _{min}	(mm)	(150)	(170)	(230)	(270)				
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-								
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-		0.	65					
Strength reduction factor for shear, concrete failure ϕ -0.70modes, Condition B ² 0.70										

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement. ³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 17—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

		TION		l la la	N	ominal bolt/cap	Nominal bolt/cap screw diameter (in.)					
DE	SIGN INFORMA	TION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄				
				in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈				
Eff	ective embedmer	nt depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)				
				in.	0.65	0.81	1	1.09				
HIS	S insert O.D.		d	(mm)	(16.5)	(20.5)	(25.4)	(27.6)				
		Characteristic bond strength		psi	725	675	595	565				
	Temperature	in cracked concrete	$ au_{k,cr}$	(MPa)	(5.0)	(4.6)	(4.1)	(3.9)				
	range A ³	Characteristic bond strength		psi	1490	1425	1365	1340				
fe		in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(10.3)	(9.8)	(9.4)	(9.2)				
Dry Concrete		Characteristic bond strength		psi	390	365	320	305				
Co	Tomporatura	in cracked concrete ²	$ au_{k,cr}$	(MPa)	(2.7)	(2.5)	(2.2)	(2.1)				
Jr V	Temperature range B ³	Characteristic bond strength		psi	810	775	740	725				
	- 0 -	in uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(5.6)	(5.3)	(5.1)	(5.0)				
ŀ	Anchor Categor	v. drv concrete	-	- -	1	1	2	2				
ľ	Strength reducti		ϕ_d	-	0.65	0.65	0.55	0.55				
		Characteristic bond strength	, -	psi	725	675	590	550				
e	Temperature	in cracked concrete	$\tau_{k,cr}$	(MPa)	(5.0)	(4.6)	(4.1)	(3.8)				
cre	range A ³	Characteristic bond strength in uncracked concrete		psi	1490	1425	1355	1300				
Con			$\tau_{k,uncr}$	(MPa)	(10.3)	(9.8)	(9.3)	(9.0)				
ed (· · /	· · · ·	· · ·	· · · ·	,				
Water-Saturated Concrete	Temperature range B ³	Characteristic bond strength in cracked concrete ²	$\tau_{k,cr}$	psi	390	365	315	295				
				(MPa)	(2.7)	(2.5)	(2.2)	(2.0)				
		Characteristic bond strength in uncracked concrete ²	τ _{k,uncr}	psi (MPa)	810 (5.6)	775 (5.3)	735 (5.1)	705 (4.9)				
	Anchor Categor	y, water-sat. concrete	-	(IVIF a) -	3	(3.3)	3	(4.9)				
ŀ	Strength reduction factor		ϕ_{ws}	-	0.45	0.45	0.45	0.45				
	<u> </u>	Characteristic bond strength	7 113	psi	690	600	500	465				
e	Temperature	in cracked concrete	$ au_{k,cr}$	(MPa)	(4.8)	(4.1)	(3.4)	(3.2)				
Water-filled hole Concrete	range A ³	Characteristic bond strength		psi	1415	1270	1150	1100				
Con	-	in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(9.8)	(8.8)	(7.9)	(7.6)				
ole (Characteristic bond strength		psi	370	325	270	250				
d h	Temperature	in cracked concrete ²	$ au_{k,cr}$	(MPa)	(2.6)	(2.2)	(1.8)	(1.7)				
fille	range B ³	Characteristic bond strength		psi	770	690	620	595				
ter-		in uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(5.3)	(4.7)	(4.3)	(4.1)				
eN N	Anchor Categor	y, water-filled hole	-	-	3	3	3	3				
Ī	Strength reducti	on factor	ϕ_{wt}	-	0.45	0.45	0.45	0.45				
		Characteristic bond strength		psi	675	625	545	520				
	Temperature	in cracked concrete	$\tau_{k,cr}$	(MPa)	(4.7)	(4.3)	(3.8)	(3.6)				
tion	range A ³	Characteristic bond strength	_	psi	1385	1325	1260	1235				
lica		in uncracked concrete	$\tau_{k,uncr}$	(MPa)	(9.6)	(9.1)	(8.7)	(8.5)				
app		Characteristic bond strength		psi	365	340	295	280				
ter	Temperature	in cracked concrete ²	$\tau_{k,cr}$	(MPa)	(2.5)	(2.3)	(2.0)	(1.9)				
EV3	range B ³	Characteristic bond strength		psi	755	720	680	670				
Underwater application		in uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(5.2)	(5.0)	(4.7)	(4.6)				
Ч П	Anchor Categor	l y, underwater application	-	- -	3	3	3	3				
	Strength reduction factor	1			~	~						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, $f_{c.}$ between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c/2,500$)^{0.1} [For SI: ($f_c/17.2$)^{0.1}]. See Section 4.1.4 of this report for bond strength determination.² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as

wind and seismic, bond strengths may be increased 40 percent. ³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 18—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT HILTI HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A CORE DRILL

	SIGN INFORMA	TION	Symbol	Units	N	ominal bolt/cap	screw diameter	(in.)
		TION	Symbol	Units	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄
			d	in.	0.65	0.81	1	1.09
HI	S insert O.D.		d	(mm)	(16.5)	(20.5)	(25.4)	(27.6)
		Characteristic bond strength	τ.	psi	1080	985	900	870
	Temperature	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(7.4)	(6.8)	(6.2)	(6.0)
	range A ³	Effective embedment depth	h _{ef}	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
ete		Effective embedment depth	l l _{ef}	(mm)	(110)	(125)	(170)	(205)
Concrete	Temperature range B ³	Characteristic bond strength		psi	580	535	495	N1/A
Cor		in uncracked concrete ² $\tau_{k,uncr}$ (MPa) (4.0)	(4.0)	(3.7)	(3.4)	N/A		
Dry		Effective embedment depth	4	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
			h _{ef}	(mm)	(110)	(125)	(170)	(205)
	Anchor Categor	-	-	2	2	3	3	
	Strength reducti	ϕ_d	-	0.55	0.55	0.45	0.45	
		Characteristic bond strength		psi	1080	985	855	800
te	Temperature	in uncracked concrete	$ au_{k,uncr}$	(MPa)	(7.4)	(6.8)	(5.9)	(5.5)
Concrete	range A ³	F # at the second state of the state	4	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
Cor		Effective embedment depth	h _{ef}	(mm)	(110)	(125)	(170)	(205)
ted		Characteristic bond strength		psi	580	535	N1/A	N1/A
tura	Temperature	in uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(4.0)	(3.7)	N/A	N/A
Water-Saturated	range B ³	Effective embedment depth	h _{ef}	in.	4 ³ / ₈	5	6 ³ / ₄	8 ¹ / ₈
ater			l lef	(mm)	(110)	(125)	(170)	(205)
Ŵ	Anchor Categor	y, water-sat. concrete	-	-	3	3	3	3
	Strength reducti	Strength reduction factor		-	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c / 2,500)^{0.1}$ [For SI: $(f'_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond

strength determination. ²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

					Nominal	bolt/cap screw dia	ameter (mm)	
DES	SIGN INFORMATION	Symbol	Units	8	10	12	16	20
	in and O.D.		mm	12.5	16.5	20.5	25.4	27.6
HIS	insert O.D.	d	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
1110	incart longth	1	mm	90	110	125	170	205
пю	insert length	•	(in.)	(3.54)	(4.33)	(4.92)	(6.69)	(8.07)
Bolt	effective cross-sectional	Ase	mm²	36.6	58	84.3	157	245
area	a	Ase	(in. ²)	(0.057)	(0.090)	(0.131)	(0.243)	(0.380)
HIS	insert effective cross-	Δ.	mm²	51.5	108	169.1	256.1	237.6
sec	tional area	A _{insert}	(in. ²)	(0.080)	(0.167)	(0.262)	(0.397)	(0.368)
	Nominal strangth as	N _{sa}	kN	29.5	46.5	67.5	125.5	196.0
	Nominal strength as governed by steel	IV _{sa}	(lb)	(6,582)	(10,431)	(15,161)	(28,236)	(44,063)
	strength – ISO 898-1 Class 8.8 bolt/cap screw	V	kN	17.5	28.0	40.5	75.5	117.5
8.8	Class 0.0 Doll/cap sciew	V _{sa}	(lb)	(3,949)	(6,259)	(9,097)	(16,942)	(26,438)
ssi 8	Nominal strength as governed by steel	N	kN	25.0	53.0	78.0	118.0	110.0
Cla	strength – HIS-N insert	N _{sa}	(lb)	(5,669)	(11,894)	(17,488)	(26,483)	(24,573)
SO 898-1 Class 8.8	Reduction for seismic shear	$lpha_{V,seis}$	-			1.00		
<u>N</u>	Strength reduction factor ϕ for tension ²	φ	-			0.65		
	Strength reduction factor ϕ for shear ²	φ	-			0.60		
	Nominal strength as	N _{sa}	kN	25.5	40.5	59.0	110.0	171.5
SS	governed by steel strength – ISO 3506-1	IN _{sa}	(lb)	(5,760)	(9,127)	(13,266)	(24,706)	(38,555)
inle	Class A4-70 Stainless	V _{sa}	kN	15.5	24.5	35.5	66.0	103.0
Sta	bolt/cap screw	v sa	(lb)	(3,456)	(5,476)	(7,960)	(14,824)	(23,133)
4-70	Nominal strength as governed by steel	N _{sa}	kN	36.0	75.5	118.5	179.5	166.5
s A	strength – HIS-RN insert	, ∙sa	(lb)	(8,099)	(16,991)	(26,612)	(40,300)	(37,394)
-1 Clas	Reduction for seismic shear	$lpha_{V,seis}$	-			0.80		
SO 3506-1 Class A4-70 Stainless	Strength reduction factor ϕ for tension ²	φ	-			0.65		
<u>s</u>	Strength reduction factor ϕ for shear ²	φ	-			0.60		

TABLE 19—STEEL DESIGN INFORMATION FOR METRIC HILTI HIS-N AND HIS-RN INSERTS¹

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. ² For use with the load combinations of ACI 318 9.2 as set forth in ACI 318 D.4.3. Values correspond to a brittle steel element.

TABLE 20—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC HILTI HIS-N AND HIS-RN INSERTS¹

	0			Nominal b	olt/cap screw dia	meter (in.)							
DESIGN INFORMATION	Symbol	Units	8	10	12	16	20						
F # a three and a data student th		mm	90	110	125	170	205						
Effective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)						
Effectiveness factor for	k	SI			7.1								
cracked concrete	k _{c,cr}	(in-lb)			(17)								
Effectiveness factor for	k	SI			10								
uncracked concrete	k _{c,uncr}	(in-lb)	(24)										
Min. anchor spacing ³		mm	63	83	102	127	140						
win. anchor spacing	S _{min}	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)						
Min. edge distance ³		mm	63	83	102	127	140						
Min. edge distance	C _{min}	(in.)	(2.5)	(3.25)	(4.0)	(5.0)	(5.5)						
	4	mm	120	150	170	230	270						
Minimum member thickness	h _{min}	(in.)	(4.7)	(5.9)	(6.7)	(9.1)	(10.6)						
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-		See Se	ection 4.1.10 of this	report.							
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-			0.65								
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70										

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 21-BOND STRENGTH DESIGN INFORMATION FOR METRIC HILTI HIS-N AND _____

		SERTS IN HOLES DRILLED WIT					t/cap screw of		
DE	SIGN INFORMA	TION	Symbol	Units	8	10	12	16	20
				mm	90	110	125	170	205
Eff	ective embedmer	nt depth	h _{ef}			-	-	-	
				(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
HI	S insert O.D.		d	mm	12.5	16.5	20.5	25.5	27.5
		1		(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
		Characteristic bond strength	$\tau_{k,cr}$	MPa	5.2	5.0	4.6	4.1	3.9
	Temperature	in cracked concrete	.,	(psi)	(755)	(725)	(675)	(595)	(565)
ete	range A ³	Characteristic bond strength in uncracked concrete	T _{k,uncr}	MPa (psi)	10.9 (1,575)	10.3 (1,490)	9.8 (1,425)	9.4 (1,365)	9.2 (1,340)
Concrete		Characteristic bond strength		MPa	2.8	2.7	2.5	2.2	2.1
3	Temperature	in cracked concrete ²	$\tau_{k,cr}$	(psi)	(405)	(390)	(365)	(320)	(305)
Dry	range B ³	Characteristic bond strength		MPa	5.9	5.6	5.3	5.1	5.0
		in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(855)	(810)	(775)	(740)	(725)
	Anchor Categor		-	-	1	1	1	2	2
	Strength reducti	on factor	<i>ø</i> d	-	0.65	0.65	0.65	0.55	0.55
		Characteristic bond strength	$\tau_{k,cr}$	MPa	5.2	5.0	4.6	4.1	3.8
rete	Temperature	in cracked concrete	.,,	(psi)	(755)	(725)	(665)	(590)	(550)
water-saturated concrete	range A ³	Characteristic bond strength	$\tau_{k,uncr}$	MPa	10.9	10.3	9.8	9.3	9.0
		in uncracked concrete	•K,unor	(psi)	(1,575)	(1,490)	(1,425)	(1,355)	(1,300)
		Characteristic bond strength	$\tau_{k,cr}$	MPa	2.8	2.7	2.5	2.2	2.0
	Temperature range B ³	in cracked concrete ²	• K, CI	(psi)	(405)	(390)	(365)	(315)	(295)
er-	тапуе в	Characteristic bond strength in uncracked concrete ²	$\tau_{k,uncr}$	MPa (nai)	5.9	5.6	5.3	5.1	4.9
wat	Anchor Categor	y, water-sat. concrete		(psi)	(855)	(810)	(775)	(735)	(705)
	Strength reducti		φ _{ws}	-	0.55	0.45	0.45	0.45	0.45
		Characteristic bond strength	,	MPa	5.2	4.8	4.1	3.4	3.2
fe	Temperature	in cracked concrete	$ au_{k,cr}$	(psi)	(755)	(690)	(595)	(500)	(465)
Concrete	range A ³	Characteristic bond strength		MPa	10.9	9.8	8.8	7.9	7.6
j S		in uncracked concrete	T _{k,uncr}	(psi)	(1,575)	(1,415)	(1,270)	(1,150)	(1,100)
lole		Characteristic bond strength		MPa	2.8	2.6	2.2	1.8	1.7
ea n	Temperature	in cracked concrete ²	$ au_{k,cr}$	(psi)	(405)	(370)	(325)	(270)	(250)
ater-tilled hole	range B ³	Characteristic bond strength	τ	MPa	5.9	5.3	4.7	4.3	4.1
		in uncracked concrete ²	T _{k,uncr}	(psi)	(855)	(770)	(690)	(620)	(595)
\$		y, water-filled hole	-	-	3	3	3	3	3
	Strength reducti		ϕ_{wf}	- MPa	0.45 4.9	0.45 4.7	0.45 4.3	0.45 3.8	0.45
	Temperature	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	(psi)	4.9 (710)	4.7 (675)	4.3 (620)	3.8 (545)	(520)
uoi	range A ³	Characteristic bond strength		MPa	10.2	9.6	9.1	8.7	8.5
olicat		in uncracked concrete	T _{k,uncr}	(psi)	(1,480)	(1,390)	(1,325)	(1,260)	(1,235)
Underwater application		Characteristic bond strength	-	MPa	2.6	2.5	2.3	2.0	1.9
	Temperature	in cracked concrete ²	$ au_{k,cr}$	(psi)	(380)	(365)	(340)	(295)	(280)
erw;	range B ³	Characteristic bond strength		MPa	5.5	5.2	5.0	4.7	4.6
Jnđ		in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(805)	(755)	(720)	(680)	(670)
ر	Anchor Categor	y, underwater application	-	-	3	3	3	3	3
	Strength reducti	on factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength *r*_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind

and seismic, bond strengths may be increased 40 percent. ³ Temperature range A: Maximum short term temperature = $130^{\circ}F(55^{\circ}C)$, Maximum long term temperature = $110^{\circ}F(43^{\circ}C)$. Temperature range B: Maximum short term temperature = $162^{\circ}F(72^{\circ}C)$, Maximum long term temperature = $110^{\circ}F(43^{\circ}C)$.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, $\alpha_{N,seis}$ = 1.00.

TABLE 22—BOND STRENGTH DESIGN INFORMATION FOR METRIC HILTI
HIS-N AND HIS-RN INSERTS IN HOLES DRILLED WITH A CORE DRILL ^{1,4}

		TION		11 14		Nominal bo	lt/cap screw	diameter (in.)	
DE	SIGN INFORMA	TION	Symbol	Units	8	10	12	16	20
	S insert O.D.			mm	12.5	16.5	20.5	25.5	27.5
	5 insen O.D.		d	(in.)	(0.49)	(0.65)	(0.81)	(1.00)	(1.09)
	Temperature	Characteristic bond strength in uncracked concrete	𝛛 _{k,uncr}	MPa (psi)	8.3 (1205)	7.4 (1080)	6.8 (985)	6.2 (900)	6.0 (870)
	range A ³		,	mm	90	110	125	170	205
ete		Effective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
Concrete	Temperature range B ³ Characteristic bond streng		τ _{k,uncr}	MPa (psi)	4.5 (655)	4.0 (580)	3.7 (535)	3.4 (495)	N/A
Dry	range B ³	Effective embedment depth	h	mm	90	110	125	170	205
_		Enective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
		ategory, dry concrete		-	1	2	2	3	3
	Strength reducti	on factor	ϕ_{d}	-	0.65	0.55	0.55	0.45	0.45
		Characteristic bond strength		MPa	8.3	7.4	6.8	5.9	5.5
te	Temperature	in uncracked concrete	$\tau_{k,uncr}$	(psi)	(1205)	(1080)	(985)	(855)	(800)
Concrete	range A ³	Effective embedment depth	h	mm	90	110	125	170	205
		Enective embedment depth	h _{ef}	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)
ited	Temperature range B ³ Characteristic bond strength in uncracked concrete ² Effective embedment depth			MPa	4.5	4.0	3.7	N/A	N/A
tura		in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(655)	(580)	(535)	N/A	N/A
Water-Saturated		Effective embedment depth	h _{ef}	mm	90	110	125	170	205
atei		''eī	(in.)	(3.5)	(4.3)	(4.9)	(6.7)	(8.1)	
\geq	Anchor Categor	y, water-sat. concrete	-	-	2	3	3	3	3
	Strength reducti	on factor	ϕ_{ws}	-	0.55	0.45	0.45	0.45	0.45

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength *f*'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.1}$ [For SI: $(f'_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only

such as wind and seismic, bond strengths may be increased 40 percent. ³ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature =110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

		0	11				Bar	size			
DE	SIGN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nor	ninal bar diameter	d	in.	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈	1	1 ¹ / ₈	1 ¹ / ₄
NO	ninai dar diameter	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
Bar	effective cross-sectional	A _{se}	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27
area	a	Ase	(mm²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)
		Nsa	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200
	Nominal strength as governed by steel	IVsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)
40	strength	Vsa	lb	#3#4#5#6#7#8 ${}^3/_8$ ${}^1/_2$ ${}^5/_8$ ${}^3/_4$ ${}^7/_8$ 1(9.5)(12.7)(15.9)(19.1)(22.2)(25.4)0.110.20.310.440.60.79(71)(129)(200)(284)(387)(510)6,60012,00018,60026,40036,00047,400(29.4)(53.4)(82.7)(117.4)(160.1)(210.9)3,9607,20011,16015,84021,60028,440(17.6)(32.0)(49.6)(70.5)(96.1)(126.5)0.650.650.609,90018,00027,90039,60054,00071,100(44.0)(80.1)(124.1)(176.2)(240.2)(316.3)5,94010,80016,74023,76032,40042,660	36,000	45,720					
٦. ۲		V _{sa}	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)
ASTM A615 Gr.	Reduction for seismic shear	$lpha_{V,seis}$	-				0.	70			
ASTN	Strength reduction factor ϕ for tension ²	φ	-				0.	65			
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			
		N	lb	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300
	Nominal strength as governed by steel	N _{sa}	(kN)	(44.0)	(80.1)	(124.1)	(176.2)	(240.2)	(316.3)	(400.4)	(508.5)
0	strength	V _{sa}	lb	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580
9r. 6		v _{sa}	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)
ASTM A615 Gr. 60	Reduction for seismic shear	$lpha_{V,seis}$	-				0.	70		1 ¹ / ₈ (28.6) 1.0 (645) 60,000 (266.9) 36,000 (160.1) 90,000 (400.4) 54,000	
ASTN	Strength reduction factor ϕ for tension ²	φ	-				0.	65		1 ¹ / ₈ (28.6) 1.0 (645) 60,000 (266.9) 36,000 (160.1) 90,000 (400.4) 54,000	
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			

TABLE 23—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS¹

For SI: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers must be appropriate for the rod. ² For use with the load combinations of ACI 318 Section 9.2, as set forth in ACI 318 Section D.4.3.

TABLE 24—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS¹

	Cumula al	Unite				Bar	size			
DESIGN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Effectiveness factor for	le le	in-lb				1	17			
cracked concrete	k _{c,cr}	(SI)				(7	. 1)			
Effectiveness factor for	k	in-lb				2	24			
uncracked concrete	k _{c,uncr}	(SI)				(1	10)			
Min. bar spacing ³	S _{min}	in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	5 ⁵ / ₈	6 ¹ / ₄
Min. Dai spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Min. edge distance ³	6	in.	1 ⁷ / ₈	2 ¹ / ₂	3 ¹ / ₈	3 ³ / ₄	4 ³ / ₈	5	5 ⁵ / ₈	6 ¹ / ₄
Min. euge distance	C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum member thickness	h	in.	h _{ef} +	- 1 ¹ / ₄			h	+ 2d₀		
	h _{min}	(mm)	(h _{ef} -	+ 30)			l l _{ef} -	- 20 ₀		
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			See	Section 4.1	.10 of this re	eport.		
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-				0.	.65			
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-				0.	.70			

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement. ³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 25-BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

								Bar	size			
DE	SIGN INFORM	IATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Min	imum Embedr	nent	h _{ef,min}	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
		nont	r er,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Ma	ximum Embed	ment	h _{ef,max}	in.	7 ¹ / ₂ (191)	10 (254)	12 ¹ / ₂ (318)	15 (381)	17 ¹ / ₂ (445)	-		25 (635)
		Characteristic bond strength in		(mm) Psi	1,590	(254)	1,505	1,455	(445)	, ,	A $4^1/_2$ (102)(114)20 $22^1/_2$ (508)(572)(508)(572)11,3651,335(9.4)(9.2)565535(3.9)(3.7)740725(5.1)(5.0)305290(2.1)(2.0)22(2.0)(2.1)(9.3)(8.9)(3.6)735705(5.1)(4.8)300280(2.1)(1.9)33(3.0)(3.9)(3.6)(1.9)33(3.0)(7.9)(7.5)(7.5)475440(3.3)(3.3)(3.0)(4.1)255235(1.6)33(3.0)620595(4.1)255(1.8)(1.6)33(3.0)620595(4.1)255(1.8)(1.6)33(3.0)620595(4.1)255(2.35)(1.6)33(3.4)680(665)(3.4)680665(4.7)280265	1,310
	Temperature	uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	-	-	(9.0)
	range A ³	Characteristic bond strength in		Psi	595	595	595	595	595	. ,	. ,	510
ete		cracked concrete ²	$ au_{k,cr}$	(MPa)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)	(3.9)	(3.7)	(3.5)
Concrete	romportataro	Characteristic bond strength in uncracked concrete ²	τ _{k,uncr}	Psi (MPa)	865 (6.0)	850 (5.9)	815 (5.6)	785 (5.4)	765 (5.3)	-		710 (4.9)
Dry	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	Psi (MPa)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)			275 (1.9)
	Anchor Categ	ory, dry concrete	-	-	1	1	1	1	2	2	2	2
	Strength Red	uction factor	ϕ_{d}	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55	0.55
		Characteristic bond strength in	_	Psi	1,590	1,570	1,505	1,455	1,405	1,355	1,295	1,230
ete	Temperature	uncracked concrete ²	$\tau_{k,uncr}$	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.3)	(8.9)	(8.5)
Concrete	range A ³	Characteristic bond strength in	$\tau_{k,cr}$	Psi	595	595	595	595	595	560	520	475
		cracked concrete ²	₽K,CI	(MPa)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)	. ,	. ,	(3.3)
Saturated		Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	Psi (MPa)	865 (6.0)	850 (5.9)	815 (5.6)	785 (5.4)	765 (5.3)			665 (4.6)
Water Sa	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	Psi (MPa)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)	320 (2.2)			260 (1.8)
Wa	Anchor Categ	ory, water saturated concrete	-	-	2	2	2	3	3	3	3	3
	Strength Red	uction factor	ϕ_{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45
	Temperature	Characteristic bond strength in uncracked concrete ²	$\tau_{k,uncr}$	Psi (MPa)	1,590 (11.0)	1,570 (10.8)	1,445 (10.0)	1,325 (9.1)	1,220 (8.4)	-		1,035 (7.1)
rete	range A ³	Characteristic bond strength in		Psi	595	595	570	540	515	. ,	. ,	400
Concrete		cracked concrete ²	T _{k,cr}	(MPa)	(4.1)	(4.1)	(3.9)	(3.7)	(3.6)		-	(2.8)
d hole (Temperature	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	Psi (MPa)	865 (6.0)	850 (5.9)	780 (5.4)	710 (4.9)	665 (4.6)			560 (3.9)
/ater-filled hole	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	Psi (MPa)	320 (2.2)	320 (2.2)	305 (2.1)	290 (2.0)	275 (1.9)			215 (1.5)
Wa	Anchor Categ	ory, water filled hole	-	-	3	3	3	3	3	3	3	3
	Strength Red	uction factor	$\phi_{ m wf}$	-	0.45	0.45	0.45	0.45	0.45			0.45
		Characteristic bond strength in uncracked concrete ²	τ _{k,uncr}	Psi	1,510	1,475	1,415	1,355	1,295	1,255		1,190
tion	range A ³	Characteristic bond strength in		(MPa) Psi	(10.4) 565	(10.2) 560	(9.8) 560	(9.3) 555	(8.9) 545			(8.2) 460
olica		cracked concrete ²	τ _{k,cr}	(MPa)	(3.9)	(3.9)	(3.9)	(3.8)	(3.8)			(3.2)
ter app	Temperature	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	Psi (MPa)	820 (5.7)	800 (5.5)	765 (5.3)	725 (5.0)	705 (4.8)			650 (4.5)
Underwater application	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	Psi (MPa)	300 (2.1)	300 (2.1)	300 (2.1)	295 (2.0)	295 (2.0)	280 (1.9)	265 (1.8)	250 (1.7)
Ŋ	Anchor Categ	ory, underwater application	-	-	3	3	3	3	3	3	3	3
	Strength Red	uction factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.1}$ [For SI: $(f'_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent. ³ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C). Temperature range B: Maximum short term temperature = 162°E (72°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by $\alpha_{N,seis} = 0.65$.

<u> </u>		UNIT REI	NFURCING	3 BAKS II	NHULES	DRILLED	WITHAC		size			
D	SIGN INFORM	ATION	Symbol	Units	#3	#4	#5	Баг #6	size #7	#8	#9	#10
					-		-	-		-	-	-
		Characteristic bond in uncracked concrete	$\tau_{k,uncr}$	psi	1,225	1,195	1,090	1,010	955	900	861 (5.0)	820
				(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(6.2)	(5.9)	(5.7)
	Temperature range A ³	Minimum Embedment	h _{ef,min}	in.	2 ³ / ₈	$2^{3}/_{4}$	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
	Tange A			(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
		Maximum Embedment	h _{ef,max}	in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
ete				(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Dry Concrete		Characteristic bond in	$\tau_{k,uncr}$	psi	665	650	595	550	520	495	N/A	N/A
Ŭ N		uncracked concrete ²	•ĸ,unci	(MPa)	(4.6)	(4.5)	(4.1)	(3.8)	(3.6)	(3.4)		-
Ā	Temperature	Minimum Embedment	h _{ef.min}	in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
	range B ³		l let,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
		Mariana Endersida		in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
		Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
	Anchor Catego	ory, dry concrete	-	-	1	1	2	2	2	3	3	3
	Strength Redu	ction factor	ϕ_{d}	-	0.65	0.65	0.55	0.55	0.55	0.45	0.45	0.45
		Characteristic bond in		psi	1,225	1,195	1,090	1,010	955	855	780	725
		uncracked concrete	$ au_{k,uncr}$	(MPa)	(8.4)	(8.2)	(7.5)	(7.0)	(6.6)	(5.9)	(5.4)	(5.0)
	Temperature			in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
	range A ³	Minimum Embedment	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
rete				in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
Sonc		Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
o pe		Characteristic bond in		psi	665	650	595	550	520			
Water Saturated Concrete		uncracked concrete ²	T _{k,uncr}	(MPa)	(4.6)	(4.5)	(4.1)	(3.8)	(3.6)	N/A	N/A	N/A
Sai	Temperature			in.	2 ³ / ₈	2 ³ / ₄	3 ¹ / ₈	3 ¹ / ₂	3 ¹ / ₂	4	4 ¹ / ₂	5
Vatei	Temperature range B ³	Minimum Embedment	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
>				in.	7 ¹ / ₂	10	12 ¹ / ₂	15	17 ¹ / ₂	20	22 ¹ / ₂	25
		Maximum Embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
	Anchor Catego	ory, water-sat. concrete	-	-	2	2	3	3	3	3	3	3
	Strength Redu	ction factor	ϕ_{ws}	-	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45
L					1	1	1					

TABLE 26—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength *f*'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f'_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_c / 2,500)^{0.1} [For SI: (f'_c / 17.2)^{0.1}]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only

such as wind and seismic, bond strengths may be increased 40 percent. ³ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Bond strength values applicable to Seismic Design Categories A and B only.

	Nominal strength as	0	11-24-					Bar size				
DE	SIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Nor	ningl har diamatar	4	mm	8.0	10.0	12.0	14.0	16.0	20.0	25.0	28.0	32.0
NOI	ninai dal diameter	d	(in.)	(0.315)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	(0.984)	(1.102)	(1.260)
Bar	effective cross-sectional	4	mm²	50.3	78.5	113.1	153.9	201.1	314.2	490.9	615.8	804.2
area	a	A _{se}	(in.²)	(0.078)	(0.122)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.247)
			kN	27.5	43.0	62.0	84.5	110.5	173.0	270.0	338.5	442.5
DIN 488 BSt 550/500		N _{sa}	(lb)	(6,215)	(9,711)	(13,98 4)	(19,03 4)	(24,86 0)	(38,84 4)	(60,69 4)	(76,13 5)	(99,44 1)
00	governed by steel strength		kN	16.5	26.0	37.5	51.0	66.5	103.0	162.0	0 28.0 34) (1.102) .9 615.8 61) (0.954) .0 338.5 59 (76,13) .0 203.0 41 (45,68	265.5
t 550/5	C C	V _{sa}	(lb)	(3,729)	(5,827)	(8,390)	(11,42 0)	(14,91 6)	(23,30 7)	(36,41 6)	•	(59,66 5)
488	Reduction for seismic shear	$lpha_{V,seis}$	-					0.70				
DIN	Strength reduction factor ϕ for tension ²	φ	-					0.65				
	Strength reduction factor ϕ for shear ²	φ	-					0.60				

TABLE 27—STEEL DESIGN INFORMATION FOR EU METRIC REINFORCING BARS¹

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Other material specifications are admissible. Nuts and washers must be appropriate for the rod. ² For use with the load combinations of ACI 318 Section 9.2, as set forth in ACI 318 Section D.4.3.

							Bar size				
DESIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Effectiveness factor for	k	SI					7.1				
cracked concrete	k _{c,cr}	(in-lb)					(17)				
Effectiveness factor for	k	SI					10				
uncracked concrete	k _{c,uncr}	(in-lb)					(24)				
Min. bar spacing ³		mm	40	50	60	70	80	100	125	140	160
Min. Dai spacing	S _{min}	(in.)	(1.6)	(2)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Min. edge distance ³	0	mm	40	50	60	70	80	100	125	140	160
Min. euge distance	C _{min}	(in.)	(1.6)	(2)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum member thickness	h _{min}	mm	h _{ef} ·	+ 30				$h_{ef} + 2d_o$			
	l I _{min}	(in.)	(h _{ef} +	- 1 ¹ / ₄)				n _{ef} + 2u _o			
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-			S	See Sectio	n 4.1.10 of	this repor	t.		
Strength reduction factor for tension, concrete failure modes, Condition B2 ϕ -0.65Strength reduction factor for shear, concrete failure modes, Condition B2 ϕ -0.70											

TABLE 28—CONCRETE BREAKOUT DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT¹

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions.

² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄-inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT¹

הבי	SIGN INFORM		Symbol	Units					Bar size	•			
DE		ATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Min	imum Embedm	ent	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
				(in.)	(2.4)	(2.4)	(2.8)	(2.95)	(3.1)	(3.5)	(3.9)	(4.4)	(5.0)
Max	kimum Embedn		h _{ef,max}	mm (in.)	160 (6.3)	200 (7.9)	240 (9.4)	280 (11.1)	320 (12.6)	400 (15.7)	500 (19.8)	560 (22.2)	640 (25.3)
		Characteristic bond	_	MPa	11.0	11.0	11.0	10.7	10.4	9.9	9.5	9.2	9.0
	Temperature	strength in uncracked concrete ²	$ au_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1545)	(1505)	(1435)	(1375)	(1340)	(1310)
	range A ³	Characteristic bond		MPa	4.1	4.1	4.1	4.1	4.1	4.1	4.0	3.7	3.5
fe		strength in cracked concrete ²	$\tau_{k,cr}$	(psi)	(590)	(590)	(590)	(590)	(590)	(590)	(580)	(535)	(510)
Dry Concrete	Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.8 (840)	5.6 (815)	5.4 (775)	5.1 (745)	5.0 (725)	4.9 (710)
Dry	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.0 (290)	1.9 (275)
	Anchor Catego	ory, dry concrete	-	-	1	1	1	1	1	1	2	2	2
	Strength Redu	ction factor	ϕ_{d}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.55	0.55	0.55
		Characteristic bond		MPa	11.0	11.0	11.0	10.7	10.4	9.9	9.5	9.0	8.5
	Temperature	strength in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1545)	(1505)	(1435)	(1375)	(1300)	(1230)
rete	range A ³	Characteristic bond		MPa	4.1	4.1	4.1	4.1	4.1	4.1	4.0	3.6	3.3
Conc		strength in cracked concrete ²	τ _{k,cr}	(psi)	(595)	(595)	(595)	(595)	(595)	(595)	(580)	(520)	(475)
er Saturated Concrete	Temperature range B ³	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.8 (840)	5.6 (815)	5.4 (775)	5.1 (745)	4.9 (705)	4.6 (670)
Water Sat	range B ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (320)	1.9 (280)	1.8 (260)
≥	Anchor Catego concrete	ory, water sat.	-	-	2	2	2	3	3	3	3	3	3
	Strength Redu	ction factor	ϕ_{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45
		Characteristic bond		MPa	11.0	11.0	11.0	10.5	10.0	8.9	8.1	7.6	7.1
e	Temperature	strength in uncracked concrete ²	$\tau_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1530)	(1445)	(1290)	(1170)	(1100)	(1035
cret	range A ³	Characteristic bond		MPa	4.1	4.1	4.1	4.1	3.9	3.7	3.4	3.0	2.8
Concrete		strength in cracked concrete ²	T _{k,cr}	(psi)	(595)	(595)	(595)	(590)	(570)	(535)	(495)	(440)	(400)
er-filled hole (Temperature	Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	6.0 (865)	6.0 (865)	6.0 (865)	5.7 (755)	5.4 (785)	4.8 (700)	4.3 (630)	4.1 (595)	3.9 (560)
Water-fil	range B ³	Characteristic bond strength in cracked concrete ²	τ _{k,cr}	MPa (psi)	2.2 (320)	2.2 (320)	2.2 (320)	2.2 (315)	2.1 (305)	2.0 (285)	1.9 (270)	1.6 (235)	1.5 (215)
		ory, water filled hole	-	-	3	3	3	3	3	3	3	3	3
	Strength Redu	ction factor Characteristic bond	$\phi_{ m wf}$	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Temperature	strength in uncracked	$ au_{k,uncr}$	MPa (psi)	10.4 (1510)	10.4 (1510)	10.3 (1495)	10.1 (1460)	9.7 (1400)	9.2 (1335)	8.8 (1265)	8.5 (1235)	8.2 (1190)
plication	range A ³	Characteristic bond strength in cracked concrete ²	T _{k,cr}	MPa (psi)	3.9 (565)	3.9 (565)	3.9 (560)	3.9 (560)	3.8 (550)	3.8 (550)	3.7 (535)	3.4 (495)	3.2 (460)
Underwater application	Temperature	Characteristic bond strength in uncracked concrete ²	T _{k,uncr}	MPa (psi)	5.7 (820)	5.7 (820)	5.6 (810)	5.4 (790)	5.2 (760)	5.0 (725)	4.7 (685)	4.6 (670)	4.5 (650)
Unden	range B ³	Characteristic bond strength in cracked concrete ²	τ _{k,cr}	MPa (psi)	2.1 (305)	2.1 (305)	2.1 (300)	2.1 (300)	2.0 (295)	2.0 (295)	2.0 (295)	1.8 (265)	1.7 (250)
		ory, underwater app.	-	-	3	3	3	3	3	3	3	3	3
	Strength Redu	ction factor	ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45 s 1 N = 0	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c/2,500$)^{0.1} [For SI: ($f_c/17.2$)^{0.1}]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent. ³ Temperature range A: Maximum short term temperature = $130^{\circ}F$ (55°C), Maximum long term temperature = $110^{\circ}F$ (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by α_{N,seis} = 0.65.

TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC **REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL¹**

DESIGN INFORMATION			Symbol	Units	Bar size								
DE					8	10	12	14	16	20	25	28	32
Dry Concrete		Characteristic bond in uncracked concrete	T _{k,uncr}	MPa	8.4	8.4	8.4	7.9	7.5	6.8	6.3	6.0	5.7
				(psi)	(1,225)	(1,225)	(1,225)	(1,150)	(1,090)	(992)	(905)	(870)	(825)
	Temperature	Minimum embedment	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
	range A ³			(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
		Maximum embedment	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
				(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
		Characteristic bond strength in uncracked	-	MPa	4.6	4.6	4.6	4.3	4.1	3.7	3.4	N/A	N/A
		concrete ²	$\tau_{k,uncr}$	(psi)	(665)	(665)	(665)	(625)	(595)	(535)	(495)		
	Temperature	Minimum embedment	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
	range B*			(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
		Maximum embedment	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
				(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
	Anchor Category, dry concrete		-	-	1	1	1	2	2	2	3	3	3
	Strength reduc	tion factor	ϕ_{d}	-	0.65	0.65	0.65	0.55	0.55	0.55	0.45	0.45	0.45
	Temperature range A ³	Characteristic bond in uncracked concrete	τ _{k,uncr}	MPa	8.4	8.4	8.4	7.9	7.5	6.8	6.0	5.5	5.0
				(psi)	(1,225)	(1,225)	(1,225)	(1,150)	(1,090)	(992)	(870)	(800)	(725)
		Minimum embedment	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
				(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
ete		Maximum embedment	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
Concrete				(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
ŏр	Temperature range B ³	Characteristic bond strength in uncracked concrete ² Minimum embedment	$\tau_{k,uncr}$	MPa	4.6	4.6	4.6	4.3	4.1	3.7	N/A	N/A	N/A
Water-saturated			¢k,uncr	(psi)	(665)	(665)	(665)	(625)	(595)	(535)			
satu			h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
ater-				(in.)	(2.36)	(2.36)	(2.76)	(2.95)	(3.15)	(3.54)	(3.94)	(4.41)	(5.04)
Ŵ		Maximum embedment	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
				(in.)	(6.3)	(7.9)	(9.4)	(11.1)	(12.6)	(15.7)	(19.8)	(22.2)	(25.3)
	Anchor Category, water-sat.concrete		-	-	2	2	2	3	3	3	3	3	3
	Strength reduction factor		ϕ_{ws}	-	0.55	0.55	0.55	0.45	0.45	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches. 1 N = 0.2248 lbf. 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent. ³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ Bond strength values applicable to Seismic Design Categories A and B only.

DESIGN INFORMATION		Cumula al	Units	Bar size						
		Symbol		10 M	15 M	20 M	25 M	30 M		
Nominal bar diameter		d	mm	11.3	16.0	19.5	25.2	29.9		
			(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)		
Bar effective cross-sectional area		Δ	mm ²	100.3	201.1	298.6	498.8	702.2		
		A _{se}	(in. ²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)		
	Nominal strength as governed by steel strength	N _{sa}	kN	54.0	108.5	161.5	270.0	380.0		
			(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)		
Q		V _{sa}	kN	32.5	65.0	97.0	161.5	227.5		
A G30			(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)		
CSA	Reduction for seismic shear	$\alpha_{V,seis}$	-	0.70						
	Strength reduction factor ϕ for tension ²	ϕ	-	0.65						
	Strength reduction factor ϕ for shear ²	φ	-	0.60						

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29). Other material specifications are admissible. Use nuts and washers appropriate for the rod strength. ² For use with the load combinations of ACI 318 Section 9.2, as set forth in ACI 318 Section D.4.3.

TABLE 32—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT¹

	Symbol	Units	Bar size							
DESIGN INFORMATION			10 M	15 M	20 M	25 M	30 M			
Effectiveness factor for	k _{c,cr}	SI			7.1					
cracked concrete		(in-lb)			(17)					
Effectiveness factor for	li li	SI	10							
uncracked concrete	k _{c,uncr}	(in-lb)	(24)							
Min. bar spacing ³	Smin	mm	57	80	98	126	150			
win. bar spacing		(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)			
Min. edge distance ³	C _{min}	mm	57	80	98	126	150			
Min. edge distance		(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)			
Minimum member thickness	h _{min}	mm	<i>h</i> _{ef} + 30	$h_{ef} + 2d_o$						
winimum member thickness		(in.)	$(h_{ef} + 1^{1}/_{4})$							
Critical edge distance – splitting (for uncracked concrete)	C _{ac}	-	See Section 4.1.10 of this report.							
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-	0.65							
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-	0.70							

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 8, installation instructions. ² Values provided for post-installed anchors installed under Condition B without supplementary reinforcement.

³For installations with 1³/₄ inch edge distance refer to Section 4.1.10 for spacing and maximum torque requirements.

TABLE 33—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT^{1,4}

			Symbol		Bar size					
	DESI	DESIGN INFORMATION		Units	10 M 15 M 20 M 25 M 30 M					
				mm	60	80	90	101	120	
Minimum embedment depth Maximum embedment depth			h _{ef,min}	(in.)	(2.37)	(3.15)	(3.54)	(3.97)	(4.71)	
			h _{ef,max}	mm	226	320	390	504	598	
				(in.)	(9.0)	(12.6)	(15.4)	(20.0)	(23.6)	
ete	Characteristic bond strength in			MPa	4.1	4.1	4.1	3.9	3.6	
	Temperature range A ³	cracked concrete	$\tau_{k,cr}$	(psi)	(595)	(595)	(595)	(595)	(520)	
		Characteristic bond strength in uncracked concrete		MPa	11.0	10.4	10.0	9.5	9.1	
			$\tau_{k,uncr}$	(psi)	(1,590)	(1,505)	(1,445)	(1,375)	(1,320)	
Concrete		Characteristic bond strength in	T	MPa	2.2	2.2	2.2	2.1	2.0	
č	Temperature	cracked concrete ²	$\tau_{k,cr}$	(psi)	(320)	(320)	(320)	(305)	(290)	
Dry	range B ³	Characteristic bond strength in	T _{k,uncr}	MPa	6.0	5.6	5.4	5.1	4.9	
		uncracked concrete ²	-n,unor	(psi)	(865)	(815)	(785)	(745)	(715)	
	Anchor Categor Strength reducti		-	-	1 0.65	1 0.65	1 0.65	2 0.55	2 0.55	
	Strength reduct		<i>ø</i> d	- MPa	4.1	4.1	4.1	3.9	3.4	
	Temperature range A ³	Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete	T _{k,cr} T _{k,uncr}		(595)	(595)	(595)		(495)	
crete				(psi) MPa	(595)	10.4	(595)	(565) 9.5	8.7	
Conc										
ed C		Characteristic bond strength in cracked concrete ²	τ _{k,cr}	(psi)	(1,590)	(1,505)	(1,445)	(1,375)	(1,255)	
urate	Temperature range B ³			MPa (a ci)	2.2	2.2	2.2	2.1	1.9	
Sat			T _{k,uncr}	(psi) MPa	(320)	(320) 5.6	(320)	(305) 5.1	(275) 4.7	
Water-Saturated Concrete		Characteristic bond strength in uncracked concrete ²		(psi)	(865)	(815)	(785)	(745)	(680)	
Ň	Anchor Category, water-sat. concrete		-	-	2	3	3	3	3	
	Strength reduction factor		ϕ_{ws}	-	0.55	0.45	0.45	0.45	0.45	
	Temperature range A ³	Characteristic bond strength in cracked concrete Characteristic bond strength in uncracked concrete	T _{k,cr}	MPa	4.1	3.9	3.7	3.3	2.9	
ete				(psi)	(595)	(570)	(540)	(480)	(425)	
ncre			τ _{k,uncr}	MPa	11.0	10.0	9.1	8.1	7.4	
Water-filled hole Concrete				(psi)	(1,590)	(1,445)	(1,315)	(1,170)	(1,070)	
hole	Temperature	Characteristic bond strength in cracked concrete ²	τ _{k,cr} τ _{k,uncr}	MPa	2.2	2.1	2.0	1.8	1.6	
lled				(psi)	(320)	(305)	(290)	(260)	(230)	
er-fi	range B ³	Characteristic bond strength in uncracked concrete ²		MPa (n ai)	6.0 (005)	5.4	4.9	4.3	4.0	
Wat	Anchor Category, water-filled hole		-	(psi)	(865)	(785)	(715)	(630)	(575)	
	Strength reduction factor		ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	
	J. 122501	Characteristic bond strength in		MPa	3.9	3.9	3.8	3.6	3.3	
	Temperature range A ³	cracked concrete	$ au_{k,cr}$	(psi)	(565)	(560)	(555)	(520)	(475)	
application		Characteristic bond strength in	Thuman	MPa	10.4	9.8	9.3	8.7	8.3	
		uncracked concrete	T _{k,uncr} T _{k,cr}	(psi)	(1,510)	(1,415)	(1,325)	(1,265)	(1,200)	
	Temperature range B ³	Characteristic bond strength in		MPa	2.1	2.1	2.0	1.9	1.8	
ater		cracked concrete ²		(psi)	(305)	(300)	(295)	(280)	(265)	
Underwater	range D	Characteristic bond strength in uncracked concrete ²	$\tau_{k,uncr}$	MPa	5.7	5.3	5.0	4.7	4.5	
Und	Anchor Category, underwater application		_	(psi) -	(820)	(770)	(720)	(685) 3	(650) 3	
	, and a state gory, and a water application				-					
	Strength reducti		ϕ_{uw}	-	0.45	0.45	0.45	0.45	0.45	

For **SI:** 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.For lb-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi ¹ Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic bond strengths may be increased 40 percent

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴ For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by α_{N,seis} = 0.65.

seismic, bond strengths may be increased 40 percent. ³ Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

TABLE 34—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN
METRIC REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL ^{1,4}

	DESIG		Cumula al	Unite			Bar size		
	DESIG	N INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
		Characteristic bond strength in uncracked concrete	$\tau_{k,uncr}$	MPa (psi)	8.4 (1225)	7.5 (1090)	6.9 (1005)	6.3 (905)	5.8 (840)
	Temperature			mm	60	80	90	101	120
	range A ³	Minimum embedment depth	h _{ef,min}	(in.)	(2.37)	(3.15)	(3.54)	(3.97)	(4.71)
ete	te	Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
Dry Concrete		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	4.6 (665)	4.1 (595)	3.8 (550)	3.4 (495)	N/A
Dry	Temperature range B ³	Minimum embedment depth	h _{ef,min}	mm (in.)	60 (2.37)	80 (3.15)	90 (3.54)	101 (3.97)	120 (4.71)
		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
	Anchor Category	dry concrete	-	-	1	2	2	3	3
	Strength reductio	n factor	ϕ_d	-	0.65	0.55	0.55	0.45	0.45
		Characteristic bond strength in uncracked concrete	τ _{k,uncr}	MPa (psi)	8.4 (1225)	7.5 (1090)	6.9 (1005)	6.0 (870)	5.2 (755)
	Temperature range A ³			mm	60	80	90	101	120
ete	Tange A		h _{ef,min}	(in.)	(2.37)	(3.15)	(3.54)	(3.97)	(4.71)
Concre		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
Water-saturated Concrete		Characteristic bond strength in uncracked concrete ²	$ au_{k,uncr}$	MPa (psi)	4.6 (665)	4.1 (595)	3.8 (550)	3.3 (475)	N/A
satu	Temperature range B ³	Minimum ombodmont donth	h	mm	60	80	90	101	120
ter-s		Minimum embedment depth	h _{ef,min}	(in.)	(2.37)	(3.15)	(3.54)	(3.97)	(4.71)
Wa		Maximum embedment depth	h _{ef,max}	mm (in.)	226 (9.0)	320 (12.6)	390 (15.4)	504 (20.0)	598 (23.6)
	Anchor Category	water-sat. concrete	-	-	2	3	3	3	3
	Strength reductio	n factor	$\phi_{ m ws}$	-	0.55	0.45	0.45	0.45	0.45

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Bond strength values correspond to concrete compressive strength *f*'_c = 2,500 psi (17.2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.1}$ [For SI: $(f_c/17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination. ² Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only

such as wind and seismic, bond strengths may be increased 40 percent. ³Temperature range A: Maximum short term temperature = 130°F (55°C), Maximum long term temperature = 110°F (43°C).

Temperature range B: Maximum short term temperature = 162°F (72°C), Maximum long term temperature = 110°F (43°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time. ⁴ Bond strength values applicable to Seismic Design Categories A and B only.

TABLE 35—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR A CORE DRILL^{1, 2, 3, 5}

	10			Bar size							
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal reinforcing	d_{h}	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
bar diameter	u _b	ASTM ACTS/ATOC	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)
Nominal bar area	A _b	ASTM A615/A706	in ² (mm ²)	0.11 (71.3)	0.20 (126.7)	0.31 (197.9)	0.44 (285.0)	0.60 (387.9)	0.79 (506.7)	1.00 (644.7)	1.27 (817.3)
Development length for $f_y = 60$ ksi and f'_c = 2,500 psi (normal	I _d	ACI 318 12.2.3	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0
weight concrete) ⁴			(mm)	(304.8)	(365.8)	(457.2)	(548.6)	(800.1)	(914.4)	(1028.7)	(1143)
Development length for $f_y = 60$ ksi and f'_c	,	ACI 318 12.2.3	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6
= 4,000 psi (normal weight concrete) ⁴	I _d	A01010 12.2.0	(mm)	(304.8)	(304.8)	(361.4)	(433.7)	(632.5)	(722.9)	(812.8)	(904.2)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318 Chapter 21 and section 4.2.4 of this report. The value of *t*[']_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

³ The value of *f*^{*c*} used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

⁴ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318 12.2.4 (d) are met to permit $\lambda > 0.75$.

$${}^{5}\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)=2.5, \ \psi_{t}=1.0, \ \psi_{e}=1.0, \ \psi_{s}=0.8 \text{ for } d_{b} \leq \#6, \ 1.0 \text{ for } d_{b}>\#6.$$

TABLE 36—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR A CORE DRILL ^{1, 2, 3, 5}

	5	Criteria Section					Bar size	20 25 32 20 25 32 (0.787) (0.984) (1.260) 314.2 490.9 804.2 (0.49) (0.76) (1.25) 871 1087 1392 (34.3) (42.8) (54.8)		
DESIGN INFORMATION	Symbol	of Reference Standard	Units	8	10	12	16	20	25	32
Nominal reinforcing bar	d _b	BS 4449: 2005	mm	8	10	12	16	20	25	32
diameter	Ub	BS 4449: 2005	(in.)	(0.315)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
Nominal bar area	Ab	BS 4449: 2005	mm ² (in ²)	50.3 (0.08)	78.5 (0.12)	113.1 (0.18)	201.1 (0.31)			
Development length for $f_y = 72.5$ ksi and $f'_c = 2500$ mei (neuron)	I _d	ACI 318 12.2.3	mm	305	348	417	556	871	1087	1392
2,500 psi (normal weight concrete) ⁴			(in.)	(12.0)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for $f_y = 72.5$ ksi and $f'_c =$	I _d	ACI 318 12.2.3	mm	305	305	330	439	688	859	1100
4,000 psi (normal weight concrete) ⁴	'd	//0101012.2.0	(in.)	(12.0)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318 Chapter 21 and section 4.2.4 of this report. The value of *f*'_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

³ The value of *t*[']_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

⁴ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318 12.2.4 (d) are met to permit λ > 0.75.

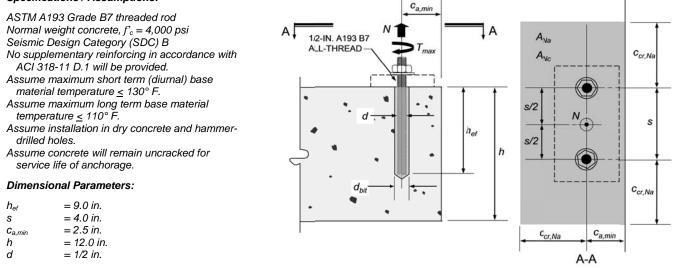
 $5\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$, $\psi_t = 1.0$, $\psi_e = 1.0$, $\psi_s = 0.8$ for $d_b < 20$ mm, 1.0 for $d_b \ge 20$ mm.

TABLE 37—DEVELOPMENT LENGTH FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR HILTI HOLLOW CARBIDE BIT OR A CORE DRILL^{1, 2, 3, 5}

	-					Bar size		
DESIGN INFORMATION	Symbol	Criteria Section of Reference Standard	Units	10M	15M	20M	25M	30M
Nominal reinforcing bar diameter	d _b	CAN/CSA-G30.18 Gr. 400	mm	11.3	16.0	19.5	25.2	29.9
Dal ulameter			(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Nominal bar area	A_b	CAN/CSA-G30.18 Gr. 400	mm²	m ² 100.3 201.1 298.6	498.8	702.2		
Nominal Dar area		CAN/CSA-G50.18 GI. 400	(in ²)	(0.16)	(0.31)	(0.46)	(0.77)	(1.09)
Development length for $f_y = 58$ ksi and $f'_c =$	ld	ACI 318 12.2.3	mm	315	445	678	876	1041
2,500 psi (normal weight concrete) ⁴	•a	10101012.2.0	(in.) (12.4) (17			(26.7)	(34.5)	(41.0)
Development length for $f_y = 58$ ksi and $f'_c =$	L	ACI 318 12.2.3	mm	305	353	536	693	823
4,000 psi (normal weight concrete) ⁴	I _d	A01310 12.2.3	(in.)	(12.0)	(13.9)	(21.1)	(27.3)	(32.4)

For **SI:** 1 inch ≡ 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹ Development lengths valid for static, wind, and earthquake loads (SDC A and B).

² Development lengths in SDC C through F must comply with ACI 318 Chapter 21 and section 4.2.4 of this report. The value of *f*_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F. ³ The value of *f*_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in holes drilled with a core drill.

⁴ For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318 12.2.4 (d) are met to permit $\lambda > 0.75$.

 $5\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$, $\psi_t = 1.0$, $\psi_e = 1.0$, $\psi_s = 0.8$ for $d_b < 20M$, 1.0 for $d_b \ge 20M$.

Specifications / Assumptions:

Calculation in accordance with ACI 318-11 Appendix D and this report	ACI 318 Code Ref.	Report Ref.
Step 1. Check minimum edge distance, anchor spacing and member thickness: $c_{min} = 2.5 \text{ in.} \leq c_{a,min} = 2.5 \text{ in.} \therefore \text{ OK}$ $s_{min} = 2.5 \text{ in.} \leq s = 4.0 \text{ in.} \therefore \text{ OK}$ $h_{min} = h_{ef} + 1.25 \text{ in.} = 9.0 + 1.25 = 10.25 \text{ in.} \leq h = 12.0 \therefore \text{ OK}$ $h_{ef,min} \leq h_{ef} \leq h_{ef,max} = 2.75 \text{ in.} \leq 9 \text{ in.} \leq 10 \text{ in.} \therefore \text{ OK}$	-	Table 8 Table 9
Step 2. Check steel strength in tension:		
Single Anchor: $N_{sa} = A_{se} \cdot f_{uta} = 0.1419 \text{ in}^2 \cdot 125,000 \text{ psi} = 17,738 \text{ lb.}$ Anchor Group: $\phi N_{sa} = \phi \cdot n \cdot A_{se} \cdot f_{uta} = 0.75 \cdot 2 \cdot 17,738 \text{ lb.} = 26,606 \text{ lb.}$ Or using Table 7: $\phi N_{sa} = 0.75 \cdot 2 \cdot 17,735 \text{ lb.} = 26,603 \text{ lb.}$	D.5.1.2 Eq. (D-2)	Table 2 Table 7
Step 3 . Check concrete breakout strength in tension: $N_{cbg} = \frac{A_{Nc}}{A_{Nc0}} \cdot \psi_{ec,N} \cdot \psi_{ed,N} \cdot \psi_{c,N} \cdot \psi_{cp,N} \cdot N_{b}$	D.5.2.1 Eq. (D-4)	-
$A_{Nc} = (3 \bullet h_{ef} + s)(1.5 \bullet h_{ef} + c_{a,min}) = (3 \bullet 9 + 4)(13.5 + 2.5) = 496 in^{2}$	-	-
$A_{\rm Nc0} = 9 \cdot h_{ef}^2 = 729 \ in^2$	D.5.2.1 and Eq. (D-5)	-
$\psi_{ec,N} = 1.0$ no eccentricity of tension load with respect to tension-loaded anchors	D.5.2.4	-
$\psi_{ed,N} = 0.7 + 0.3 \cdot \frac{c_{a,min}}{1.5h_{ef}} = 0.7 + 0.3 \cdot \frac{2.5}{1.5 \cdot 9} = 0.76$	D.5.2.5 and Eq. (D-10)	-
$\psi_{c,N} = 1.0$ uncracked concrete assumed ($k_{c,uncr} = 24$)	D.5.2.6	Table 8
Determine c_{ac} : From Table 9: $\tau_{unor} = 1,570 \text{ psi}$ $\tau_{unor} = \frac{k_{c,unor}}{\pi \cdot d} \sqrt{h_{ef} \cdot f'_{c}} = \frac{24}{\pi \cdot 0.5} \sqrt{9.0 \cdot 4,000} = 2,899 \text{ psi} > 1,570 \text{ psi} \therefore \text{ use } 1,570 \text{ psi}$ $c_{ac} = h_{ef} \cdot \left(\frac{\tau_{unor}}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{h}{h_{ef}}\right] = 9 \cdot \left(\frac{1,570}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{12}{9}\right] = 22.0 \text{ in.}$	-	Section 4.1.10 Table 9
For $c_{a,min} < c_{ac}$ $\psi_{cp,N} = \frac{\max \left c_{a,\min}; 1.5 \cdot h_{ef} \right }{c_{ac}} = \frac{\max \left 2.5; 1.5 \cdot 9 \right }{22.0} = 0.61$	D.5.2.7 and Eq. (D-12)	-
$N_b = k_{c,uncr} \cdot \lambda \cdot \sqrt{f'_c} \cdot h_{ef}^{1.5} = 24 \cdot 1.0 \cdot \sqrt{4,000} \cdot 9^{1.5} = 40,983$ lb.	D.5.2.2 and Eq. (D-6)	Table 8
$N_{cbg} = \frac{496}{729} \cdot 1.0 \cdot 0.76 \cdot 1.0 \cdot 0.61 \cdot 40,983 = \textbf{12,927 lb.}$	-	-
$\phi N_{cbg} = 0.65 \bullet 12,927 = 8,403$ lb.	D.4.3(c)	Table 8

FIGURE 6—SAMPLE CALCULATION [POST-INSTALLED ANCHORS]

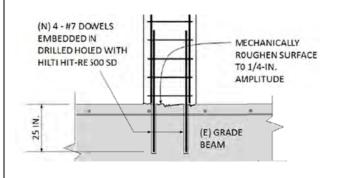
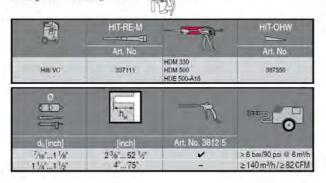

Step 4 . Check bond strength in tension: $N_{ag} = \frac{A_{Na}}{A_{Na0}} \cdot \psi_{ec,Na} \cdot \psi_{ed,Na} \cdot \psi_{cp,Na} \cdot N_{ba}$	D.5.5.1 Eq. (D-19)	
$A_{Na} = (2c_{Na} + s)(c_{Na} + c_{a,min})$ $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1,100}} = 10 \cdot 0.5 \cdot \sqrt{\frac{1,570}{1,100}} = 5.97 \text{ in.}$ $A_{Na} = (2 \cdot 7.13 + 4)(7.13 + 2.5) = 135.0 \text{ in}^2$	D.5.5.1 Eq. (D-21)	Table 9
$A_{Na0} = (2c_{Na})^2 = (2 \bullet 5.97)^2 = $ 142.6 in ²	D.5.5.1 and Eq. (D-20)	-
$\psi_{ec,Na} = 1.0$ no eccentricity – loading is concentric	D.5.5.3	-
$\psi_{ed,Na} = \left(0.7 + 0.3 \cdot \frac{c_{a,\min}}{c_{Na}}\right) = \left(0.7 + 0.3 \cdot \frac{2.5}{5.97}\right) = 0.83$	D5.5.4	-
$\psi_{cp,Na} = \frac{\max \left c_{a,\min}; c_{Na} \right }{c_{ac}} = \frac{\max \left 2.5; 5.97 \right }{22.0} = 0.27$	D.5.5.5	-
$N_{ba} = \lambda \bullet \tau_{uncr} \bullet \pi \bullet d \bullet h_{ef} = 1.0 \bullet 1,570 \bullet \pi \bullet 0.5 \bullet 9.0 = 22,195 \ lb.$	D.5.5.2 and Eq. (D-22)	Table 9
$N_{ag} = \frac{135.0}{142.6} \cdot 1.0 \cdot 0.83 \cdot 0.27 \cdot 22,195 = \textbf{4,709 lb}.$	-	-
$\phi N_{ag} = 0.65 \bullet 4,709 = 3,061$ lb.	D.4.3(c)	Table 9
Step 5. Determine controlling strength:		
Steel Strength $\phi N_{sa} = 26,603$ lb.	D.4.1	_
Concrete Breakout Strength $\phi N_{cbg} = 8,403$ lb.	0.7.1	-
Bond Strength $\phi N_{ag} =$ 3,061 lb. CONTROLS		

FIGURE 6—SAMPLE CALCULATION [POST INSTALLED ANCHORS] (Continued)

Specifications / Assumptions: Development length for column starter bars Existing construction (E): (N) column Foundation grade beam 24 wide x 36-in deep., 4 ksi normal weight concrete, ASTM A615 Gr. 60 reinforcement New construction (N): Roughened surface, ¼-in. 18 x 18-in. column as shown, centered on 24-in wide grade beam, 4 ksi normal weight concrete, amplitude ASTM A615 Gr. 60 reinforcement, 4 - #7 column bars The column must resist moment and shear arising from wind loading. (N) drilled-in dowels **Dimensional Parameters:** = 0.875 in. d_b $c_b + K_{tr}$ = 2.5 d_b (E) foundation reinforcing = 1.0 Ψt = 1.0 Ψe $\psi_{\rm s}$ = 1.0Calculation in accordance with ACI 318-11 ACI 318 Code Ref. Step 1. Determination of development length for the column bars: $l_{d} = \left| \frac{3}{40} \cdot \frac{f_{y}}{\lambda \cdot \sqrt{f'_{c}}} \cdot \frac{\psi_{l} \psi_{e} \psi_{s}}{\frac{c_{b} + K_{tr}}{d}} \right| \cdot d_{b} = \left[\frac{3}{40} \cdot \frac{60000}{1.0 \cdot \sqrt{4000}} \cdot \frac{(1.0)(1.0)(1.0)}{2.5} \right] \cdot 0.875 = 25in.$ Eq. (12-1)

Note that the confinement term K_{tr} is taken equal to the maximum value 2.5 given the edge distance and confinement condition

Step 2 Detailing (not to scale)


FIGURE 7—SAMPLE CALCULATION [POST-INSTALLED REINFORCING BARS]

Hilti HIT-RE 500-SD

nim	HAS	HIS-N	Rebar			HIT-DL	HIT-CHC
110	-11-	and an order	anna	HIT-RB	HITSZ		
do [inch]		d [inch]	of the owner of the	[inch]	[inch]	[inch]	Art. No.
7/16	3/8	-	-	7/16	-	-	
1/2	-	-	#3	1/2	1/2	1/2	
9/16	1/2	-	10M	9/16	9/6	9/16	387551
5/8	-	-	#4	5/8	5/1	9/16	38/351
11/16	-	3/8	-	11/16	11/16	11/16	
3/4	5/8	-	15M #5	3/4	3/1	3/4	
7/8	3/4	1/2	#6	7/8	7/1	7/8	
1	7/8	4	20M #6 #7	1	1	1	10
11/8	1	5/8	#7 #8	11/8	1 1/8	1	007770
11/4	-	3/4	25M #8	11/4	1 1/4	1	387552
1 3/8	11/4	-	#9	13/8	13/8	13/8	
11/2	-	-	30M #10	11/2	1 1/2	13/8	1

Hilti HIT-RE 500-SD

ļļ	-		ne variana	HIT-RB	HIT-SZ	HIT-DL	
d _o [mm]		d [mm]		[mm]	[mm]		An. No.
10	8	-	-	10	-	-	
12	10	-	8	12	12	12	
14 16 18 20	12	8	10	14	14	14	387551
16	-	-	12	16	16	16	507551
18	16	10	14	18	18	18	
20	-	-	16	20	20	20	
22	20	12	18	22	22	20	
25	-	-	20	25	25	25	
28	24	16	22	28	28	25	
30	27	-	-	30	30	25	387552
32	-	20	24/25	32	32	32	307002
35	30	-	26/28	35	35	32	
37	-	-	30	37	37	32	
40		-	32	40	40	32	

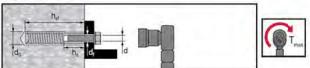

HIT-RB h_d > 20d HIT-DL: hef > 250 mm

0 HIT-V HIS-N

HIT-RE-M Ì HIT-OHW 11 HDM 330 / 500 HDE 500-A18 Hiti VC 337111 387550 0 (1) - h... 1 P 0 Art. No. 381215 10...32 60..1500 1 ≥ 6 ba//90 psi ≥ 149 m³/h 3...40 100.,1920

4

FIGURE 8—INSTALLATION INSTRUCTIONS


HAS / HIT-V

assesse) Ø d [inch]	Ød₀ [inch]	h _e [inch]	Ød _t [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	23/8 71/2	7/18	15	20
1/2	9/18	23/4 10	9/16	30	41
5/8	3/4	31/8 121/2	11/18	60	81
3/4	7/8	31/2 15	13/15	100	136
7/8	1	31/2 171/2	15/18	125	169
1	11/8	420	11/8	150	203
11/4	136	5 25	13/4	200	271

HIT-V

aunuajjo Ø d (mm)	Ød₀ [mm]	hə (mm)	0 d; [nm]	T _{max} [Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70.240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	96480	26	200
M27	30	108540	30	270
M30	35	120_600	33	300

HIS (-N, -RN)

Ø d [inch]	Ød _o [inch]	he [inch]	Ød, [inch]	h [inch]	T _{max} [ft-lb]	T _{ima} [Nm]
3/8	11/16	43/8	7/16	3/815/16	15	20
1/2	7/8	5	9/16	1/213/11	30	41
5/8	11/8	63/4	11/16	5/811/2	60	81
3/4	11/4	81/8	13/16	3/417/8	100	136

Ø d Immi	Ø d _o [mm]	h _{el} [mm]	Ød, [mm]	h; (mm)	T _{max} [Nm]
M8	14	90	9	820	10
M10	18	110	12	1025	20
M12	22	125	14	1230	40
M16	28	170	18	1640	80
M20	32	205	22	2050	150

Rebar

het	
(anarararararararararararararararararara	A A A A A A A A A A A A A A A A A A A
d	d

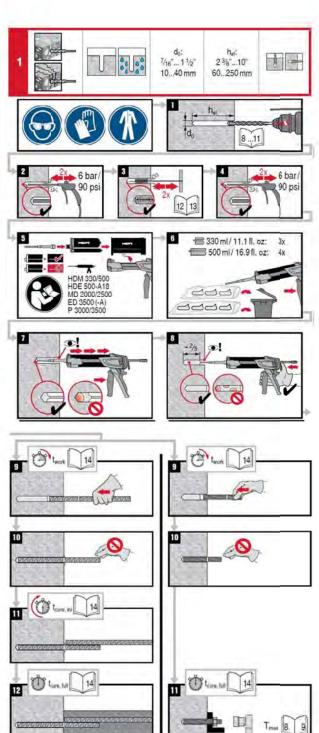
US Rebar Ød ha [inch] #3 1/2 23/8...221/2 #4 5/8 23/4....30 3¹/₈...37¹/₂ 3¹/₂...15 15...45 #5 3/4 1/8 #6 15...43 3¹/₂...17¹/₂ 17¹/₂...52¹/₂ 4...20 20...60 1 #7 11/8 #8 1 1/4 #9 13/8 4¹/₂...67¹/₂ 5...75 #10 11/2

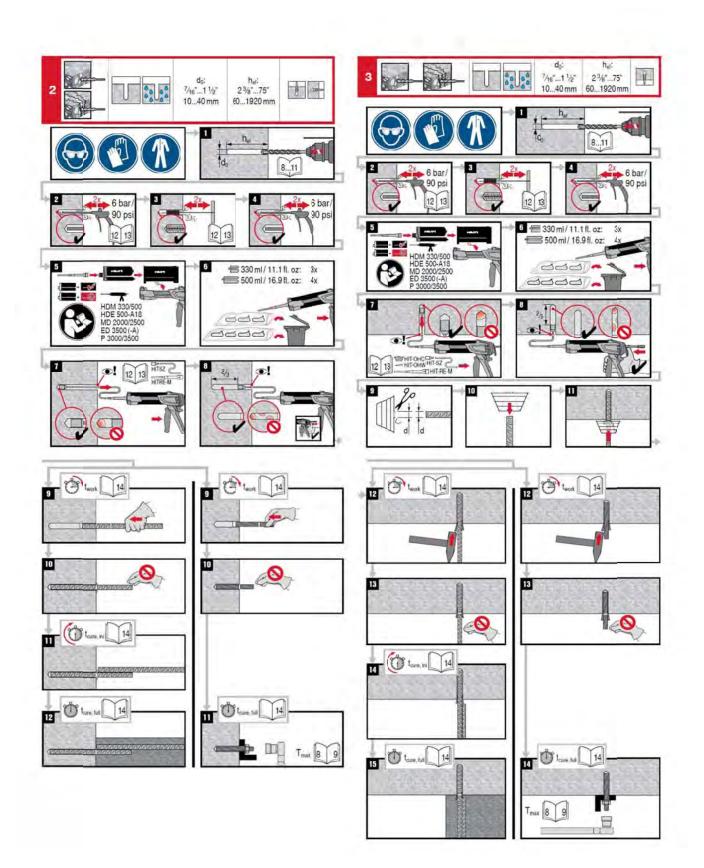
CA Rebar

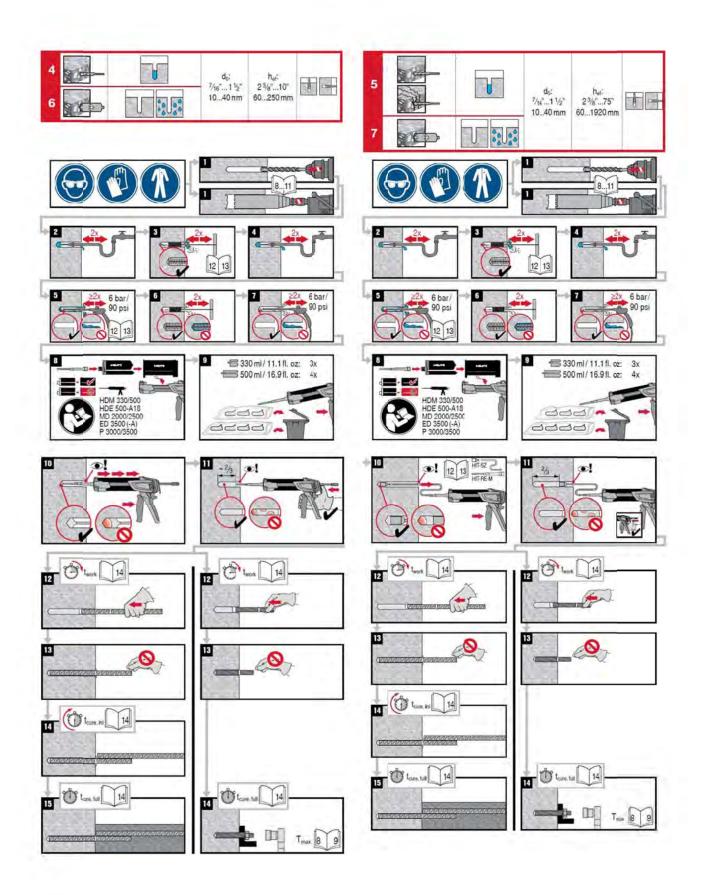
0000000	Ø d _e	h _{et}
d	[inch]	Immi
10 M	9/16	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 1/4 (32 mm)	1011512
30 M	11/2	1201794

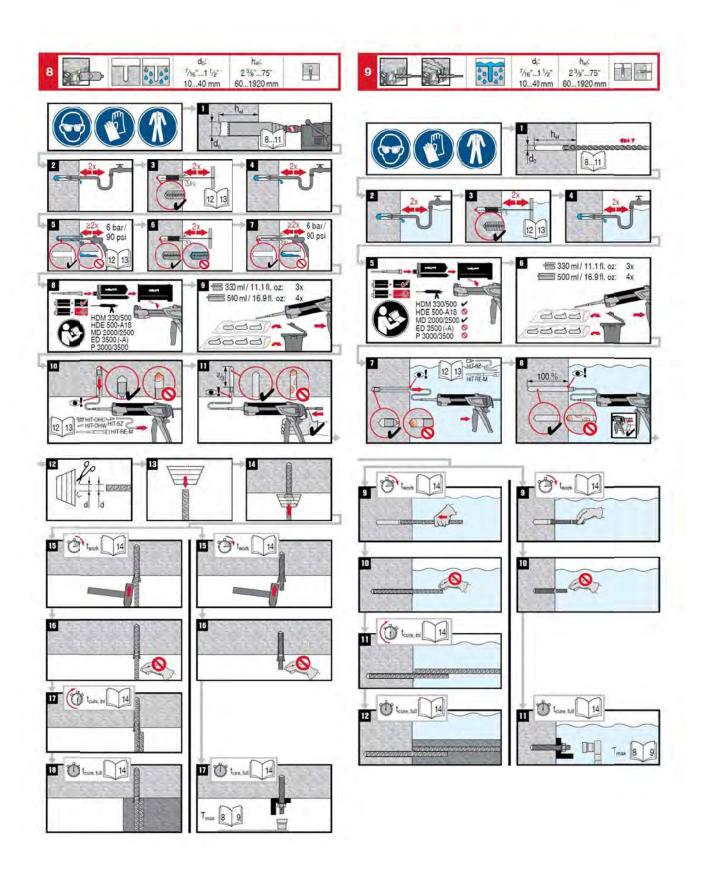
EU Rebar

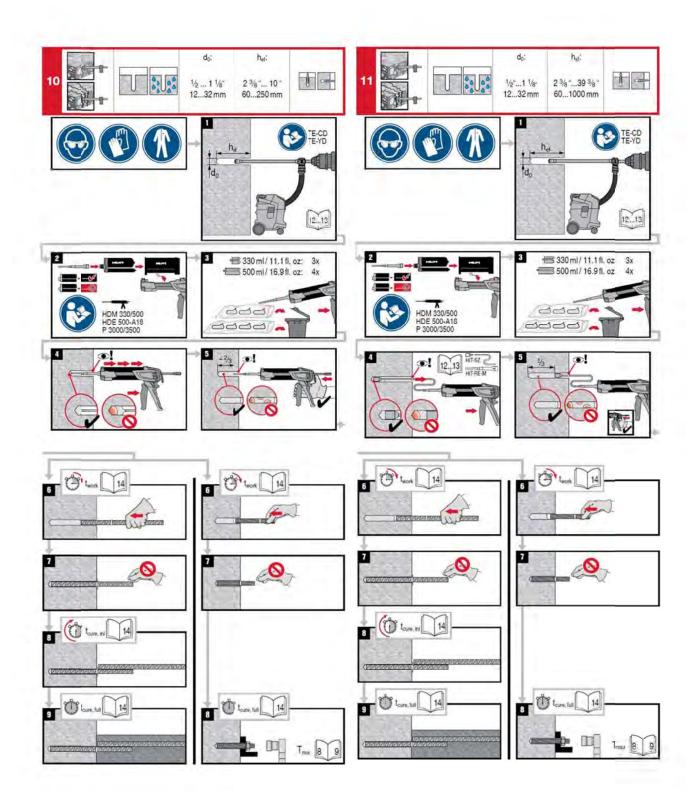
i toosoosi 10 d (mm)	Ø d _o [mm]	h _{et} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920

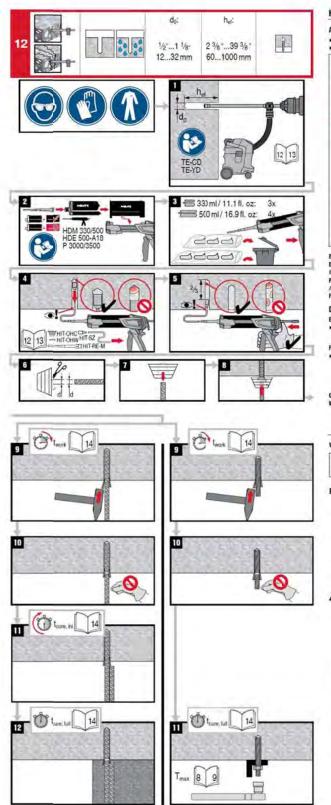

	10				
	[°C]	[°F]	🖨 tea	👘 tanın	U
U	5	41	21/2 h	≥18 h	≥72 h
	10	50	2h	≥12 h	≥48 h
1-	15	59	11/2 h	≥Bh	≥24 h
	20	68	30 min	≥6 h	≥12h
	30	86	20 min	≥4 h	≥8h
	40	104	12 min	≥2 h	≥4h


Walkarananana Rebar - hef≥ 20d


2 • >


	(projecta)	her	10	
	≤ US #5	12 1/2 37 1/2 [inch]		41 °F 104 °F 5 °C 40 °C
HDM, HDE, HIT-P 8000D	≤ EU 16mm	320 960 [mm]	- 41 °F 104 °F	
HII-P 00000	≤ CAN 15M	320 960 [mm]	- 5°C 40 °C	
	≤ US #7	17 1/2	41 °F 104 °F 5 °C 40 °C	41 °F 104 °F 5 °C 40 °C
HDE, HIT-P 8000D	s EU 20mm	400 1200 [mm]		
HIT-P 0000D	≤ CAN 20M	390 1170 [mm]		
HIT-P 8000D	≤ US #10	2575 [inch]	41 °F 104 °F 5 °C 40 °C	41 °F 104 °F 5 °C 40 °C
	≤ EU 32mm	640 1920 [mm]		
	≤ CAN 30M	598 1794 [mm]	5.0	


	F		h.c		
	1.1.1.1.1.1.1.1	s US #5	12 1/2 37 1/2 [inch]		
HDM, HD HIT-P 800		≤ EU 16mm	320 960 [mm]	41 °F 104 °F	41 °F 104 °F 5 °C 40 °C
First out	00	≤ CAN 15M	320 960 [mm]	5 0 40 0	0.01140.0



Hilti HIT-RE 500-SD

Adhesive anchoring system for rebai and anchor fastenings in concrete

Prior to use of product, follow the instructions for use and the legally obligated safety precautions.

See the Material Safety Data Sheet for this product.

HIIII HIT-RE 500

Contains spoxy constituents. May produce an allergic reaction.(A) Centalis: reaction product: bisphenol-A-(epichlorhydnin) epoxy resin MW s 700 (A), reaction product: bisphenol-F epichlon hydnin resin MWs/700 (A), m-xylenediamire.(B)

P337+P313 fl eye irritation persists: Get medical advice/attenton

ended protective equipment

Eye protectim: Tightly sealed safety glasses e.g.: #02065449 Safety glasses PP EY-CA NCH clear; #02065591 Soggles PP EY-NA PI HC/AF clear;

Protective gaves: EN 374 / EN 398; Material of gloves: Nitrile nubber, NBR Avoid directorntact with the chemical/ the product/ the preparation by organizational Final selection of appropriate protective equipment is in the responsibility of the user

Disposal considerations

Empty packs: Leave the Mixer attached and dispose of via the local Green Dot collecting system - or EAX waste material code 15 01 02 plastic packaging.

Fail or partially emptiled packs: • dispose of as special waste in accordance with official regulations. • EAK waste material code: 20 01 27° paint, inks, adhesives and resins containing dangerous substances. • or waste material code: EAK 08 04 09 waste adhesives and sealants containing organic solvents or other dangerous substances

Content	330 ml / 11.1 fl.oz	500 ml / 16.9 fl.oz
Weight	480 g / 16.9 oz	727 g / 25.6 oz

Hilli HIT-RE 500-SD

Warranty: Refer to standard Hill terms and conditions of sale for warranty information.

Failure toobserve these installation instructions, use of non-Hith anchors, poor or questionable concrete candillions, or unique applications may affect the reliability or performance of the fastenings.

Product Information

- Always keep this instruction for use together with the product
- Ensure that the instruction for use is with the product when it is given to other persons. Material Safety Data Sheet: Review the MSDS before use.
- Check expiration date: See expiration date imprint on follpack manifold (month/year). Do not use expired product.
- Foll pick temperature during usage: +5 °C to 40 °C / 41 °F to 104 °F. Conditions for transport and storage: Keep in a cool, dry and dark place betw 41 °F to 77 °F. een +5 °C to 25 °C
- For any application not covered by this document / beyond values specified, please contact Hilti
- Partity used foil packs must be used up within 4 weeks. Leave the mixer attached on the foil pack manifold and store
 under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of uncher adhesive.

A WAENING

- 1 Improver handling may cause mortar splashes. Eye contact with mortar may cause treversible eye damage! Always wear tightly sealed safety gasses, gives and protective citches before handling the mortar Never start dispensing without a more properly screwed on. Attach a new mixer prior to dispensing a new foil pack (snug fit).
-
- Caution! Never remove the moter while the foil pack system is under pressure. Press the release oction of the discenser to avoid mortar splashing.
- Use only the type of mixer supplied with the adhesive. Do not modify the mixer in any way. Never use damaged foil packs and/or damaged or unclean foil pack holders.
- 1 Poor bad values / potential failure of tastening points due to inadequate borehole cleaning. The boreholes must be dry and free of debris, dust, water, ice, oil grease and other contaminants prior to adhesive injection. For blowing out the borehole - blow out with oil free air until return air stream is free of noticeable dist. Foi flushing the borehole - flush with water line pressure until water runs clear.
- Important! Remove all water from the borehole and blow but with oil tree compressed air until borehole is completely dried before mortar injection (not applicable to hammer drilled hole in underwater application)
- 1 Ensure that boreholes are filled from the back of the boreholes without forming air volds.
 - If recessary, use the accessories /extensions to reach the back of the borehole
- For overhead applications use the overhead accessones HIT-SZ / P and take special care when inserting the tasten ning element. Excess adhesive may be forced out of the borehole. Wake sure that no mortar drips who the installer. If a new mixer is installed onto a previously-opened foil pack, the first trigger pulls must be discarded.
- A rew mixer must be used for each new foil pack.

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-2322 FBC Supplement*

Reissued April 2014 This report is subject to renewal April 2016.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC. 7250 DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024 (800) 879-8000 www.us.hilti.com HiltiTechEng@us.hilti.com

EVALUATION SUBJECT:

HILTI HIT-RE 500-SD ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 500-SD Adhesive Anchoring System, recognized in ICC-ES master evaluation report ESR-2322, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2014 Florida Building Code—Building
- 2010 Florida Building Code—Building
- 2014 Florida Building Code—Residential
- 2010 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-RE 500-SD Adhesive Anchoring System, described in Sections 2.0 through 7.0 of the master evaluation report ESR-2322, complies with the 2014 and 2010 *Florida Building Code—Building* and the 2014 and 2010 *Florida Building Code—Residential*, provided the design and installation are in accordance with the *International Building Code*[®] (IBC) provisions noted in the master report, and the following conditions:

- Design wind loads must be based on Section 1609 of the 2014 or 2010 *Florida Building Code—Building* or Section 301.2.1.1 of the 2014 or 2010 *Florida Building Code—Residential*, as applicable.
- Load combinations must be in accordance with Section 1605.2 or Section 1605.3 of the 2014 or 2010 *Florida Building Code—Building*, as applicable.

Use of the Hilti HIT-RE 500-SD Adhesive Anchoring System with stainless steel threaded rod materials and reinforcing bars and stainless steel Hilti HIS-RN inserts has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the 2014 and 2010 *Florida Building Code—Building* and the 2014 and 2010 *Florida Building Code—Residential* when the following conditions are met:

• The design wind loads for use of the anchors in the High-velocity Hurricane Zone are based on Section 1620 of the *Florida Building Code—Building.*

*Revised August 2015

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

• When complying with the 2010 Florida Building Code—Building or the 2010 Florida Building Code—Residential, reinforcing bars must be in accordance with Section 1922.4.

Use of the Hilti HIT-RE 500-SD Adhesive Anchoring System with carbon steel threaded rod materials and reinforcing bars, carbon steel Hilti HIT-Z anchor rods and carbon steel Hilti HIS-N inserts for compliance with the High-velocity Hurricane Zone provisions of the 2014 or 2010 *Florida Building Code—Building* and the 2014 or 2010 *Florida Building Code—Residential* has not been evaluated and is outside the scope of the supplemental report.

For products falling under Florida Rule 9N-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the master report, reissued April 2014 and revised August 2015.